fpn.py 4.3 KB
Newer Older
W
WenmuZhou 已提交
1 2 3 4
"""
This code is refer from:
https://github.com/whai362/PSENet/blob/python3/models/neck/fpn.py
"""
W
add fpn  
WenmuZhou 已提交
5 6 7 8 9 10

import paddle.nn as nn
import paddle
import math
import paddle.nn.functional as F

W
WenmuZhou 已提交
11

W
add fpn  
WenmuZhou 已提交
12
class Conv_BN_ReLU(nn.Layer):
W
WenmuZhou 已提交
13 14 15 16 17 18
    def __init__(self,
                 in_planes,
                 out_planes,
                 kernel_size=1,
                 stride=1,
                 padding=0):
W
add fpn  
WenmuZhou 已提交
19
        super(Conv_BN_ReLU, self).__init__()
W
WenmuZhou 已提交
20 21 22 23 24 25 26
        self.conv = nn.Conv2D(
            in_planes,
            out_planes,
            kernel_size=kernel_size,
            stride=stride,
            padding=padding,
            bias_attr=False)
W
add fpn  
WenmuZhou 已提交
27 28 29 30 31 32
        self.bn = nn.BatchNorm2D(out_planes, momentum=0.1)
        self.relu = nn.ReLU()

        for m in self.sublayers():
            if isinstance(m, nn.Conv2D):
                n = m._kernel_size[0] * m._kernel_size[1] * m._out_channels
W
WenmuZhou 已提交
33 34 35 36 37
                m.weight = paddle.create_parameter(
                    shape=m.weight.shape,
                    dtype='float32',
                    default_initializer=paddle.nn.initializer.Normal(
                        0, math.sqrt(2. / n)))
W
add fpn  
WenmuZhou 已提交
38
            elif isinstance(m, nn.BatchNorm2D):
W
WenmuZhou 已提交
39 40 41 42 43 44 45 46
                m.weight = paddle.create_parameter(
                    shape=m.weight.shape,
                    dtype='float32',
                    default_initializer=paddle.nn.initializer.Constant(1.0))
                m.bias = paddle.create_parameter(
                    shape=m.bias.shape,
                    dtype='float32',
                    default_initializer=paddle.nn.initializer.Constant(0.0))
W
add fpn  
WenmuZhou 已提交
47 48 49 50

    def forward(self, x):
        return self.relu(self.bn(self.conv(x)))

W
WenmuZhou 已提交
51

W
add fpn  
WenmuZhou 已提交
52 53 54 55 56
class FPN(nn.Layer):
    def __init__(self, in_channels, out_channels):
        super(FPN, self).__init__()

        # Top layer
W
WenmuZhou 已提交
57 58
        self.toplayer_ = Conv_BN_ReLU(
            in_channels[3], out_channels, kernel_size=1, stride=1, padding=0)
W
add fpn  
WenmuZhou 已提交
59
        # Lateral layers
W
WenmuZhou 已提交
60 61
        self.latlayer1_ = Conv_BN_ReLU(
            in_channels[2], out_channels, kernel_size=1, stride=1, padding=0)
W
add fpn  
WenmuZhou 已提交
62

W
WenmuZhou 已提交
63 64
        self.latlayer2_ = Conv_BN_ReLU(
            in_channels[1], out_channels, kernel_size=1, stride=1, padding=0)
W
add fpn  
WenmuZhou 已提交
65

W
WenmuZhou 已提交
66 67
        self.latlayer3_ = Conv_BN_ReLU(
            in_channels[0], out_channels, kernel_size=1, stride=1, padding=0)
W
add fpn  
WenmuZhou 已提交
68 69

        # Smooth layers
W
WenmuZhou 已提交
70 71
        self.smooth1_ = Conv_BN_ReLU(
            out_channels, out_channels, kernel_size=3, stride=1, padding=1)
W
add fpn  
WenmuZhou 已提交
72

W
WenmuZhou 已提交
73 74
        self.smooth2_ = Conv_BN_ReLU(
            out_channels, out_channels, kernel_size=3, stride=1, padding=1)
W
add fpn  
WenmuZhou 已提交
75

W
WenmuZhou 已提交
76 77
        self.smooth3_ = Conv_BN_ReLU(
            out_channels, out_channels, kernel_size=3, stride=1, padding=1)
W
add fpn  
WenmuZhou 已提交
78 79 80 81 82

        self.out_channels = out_channels * 4
        for m in self.sublayers():
            if isinstance(m, nn.Conv2D):
                n = m._kernel_size[0] * m._kernel_size[1] * m._out_channels
W
WenmuZhou 已提交
83 84 85 86 87
                m.weight = paddle.create_parameter(
                    shape=m.weight.shape,
                    dtype='float32',
                    default_initializer=paddle.nn.initializer.Normal(
                        0, math.sqrt(2. / n)))
W
add fpn  
WenmuZhou 已提交
88
            elif isinstance(m, nn.BatchNorm2D):
W
WenmuZhou 已提交
89 90 91 92 93 94 95 96
                m.weight = paddle.create_parameter(
                    shape=m.weight.shape,
                    dtype='float32',
                    default_initializer=paddle.nn.initializer.Constant(1.0))
                m.bias = paddle.create_parameter(
                    shape=m.bias.shape,
                    dtype='float32',
                    default_initializer=paddle.nn.initializer.Constant(0.0))
W
add fpn  
WenmuZhou 已提交
97

W
WenmuZhou 已提交
98 99
    def _upsample(self, x, scale=1):
        return F.upsample(x, scale_factor=scale, mode='bilinear')
W
add fpn  
WenmuZhou 已提交
100

W
WenmuZhou 已提交
101 102
    def _upsample_add(self, x, y, scale=1):
        return F.upsample(x, scale_factor=scale, mode='bilinear') + y
W
add fpn  
WenmuZhou 已提交
103 104 105 106 107 108

    def forward(self, x):
        f2, f3, f4, f5 = x
        p5 = self.toplayer_(f5)

        f4 = self.latlayer1_(f4)
W
WenmuZhou 已提交
109
        p4 = self._upsample_add(p5, f4, 2)
W
add fpn  
WenmuZhou 已提交
110 111 112
        p4 = self.smooth1_(p4)

        f3 = self.latlayer2_(f3)
W
WenmuZhou 已提交
113
        p3 = self._upsample_add(p4, f3, 2)
W
add fpn  
WenmuZhou 已提交
114 115 116
        p3 = self.smooth2_(p3)

        f2 = self.latlayer3_(f2)
W
WenmuZhou 已提交
117
        p2 = self._upsample_add(p3, f2, 2)
W
add fpn  
WenmuZhou 已提交
118 119
        p2 = self.smooth3_(p2)

W
WenmuZhou 已提交
120 121 122
        p3 = self._upsample(p3, 2)
        p4 = self._upsample(p4, 4)
        p5 = self._upsample(p5, 8)
W
add fpn  
WenmuZhou 已提交
123 124

        fuse = paddle.concat([p2, p3, p4, p5], axis=1)
W
WenmuZhou 已提交
125
        return fuse