character.py 7.5 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import string
import re
from .check import check_config_params
import sys


class CharacterOps(object):
    """ Convert between text-label and text-index """

    def __init__(self, config):
        self.character_type = config['character_type']
        self.loss_type = config['loss_type']
T
fix bug  
tink2123 已提交
28
        self.max_text_len = config['max_text_length']
L
LDOUBLEV 已提交
29 30 31 32
        if self.character_type == "en":
            self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
            dict_character = list(self.character_str)
        elif self.character_type == "ch":
T
tink2123 已提交
33 34
            if self.loss_type == "srn":
                raise Exception("SRN can only support in character_type == en")
L
LDOUBLEV 已提交
35
            character_dict_path = config['character_dict_path']
36
            add_space = False
T
tink2123 已提交
37 38
            if 'use_space_char' in config:
                add_space = config['use_space_char']
L
LDOUBLEV 已提交
39 40 41 42
            self.character_str = ""
            with open(character_dict_path, "rb") as fin:
                lines = fin.readlines()
                for line in lines:
T
tink2123 已提交
43
                    line = line.decode('utf-8').strip("\n").strip("\r\n")
L
LDOUBLEV 已提交
44
                    self.character_str += line
45 46
            if add_space:
                self.character_str += " "
L
LDOUBLEV 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59
            dict_character = list(self.character_str)
        elif self.character_type == "en_sensitive":
            # same with ASTER setting (use 94 char).
            self.character_str = string.printable[:-6]
            dict_character = list(self.character_str)
        else:
            self.character_str = None
        assert self.character_str is not None, \
            "Nonsupport type of the character: {}".format(self.character_str)
        self.beg_str = "sos"
        self.end_str = "eos"
        if self.loss_type == "attention":
            dict_character = [self.beg_str, self.end_str] + dict_character
T
tink2123 已提交
60 61
        elif self.loss_type == "srn":
            dict_character = dict_character + [self.beg_str, self.end_str]
L
LDOUBLEV 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
        self.dict = {}
        for i, char in enumerate(dict_character):
            self.dict[char] = i
        self.character = dict_character

    def encode(self, text):
        """convert text-label into text-index.
        input:
            text: text labels of each image. [batch_size]

        output:
            text: concatenated text index for CTCLoss.
                    [sum(text_lengths)] = [text_index_0 + text_index_1 + ... + text_index_(n - 1)]
            length: length of each text. [batch_size]
        """
T
tink2123 已提交
77
        if self.character_type == "en":
L
LDOUBLEV 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
            text = text.lower()

        text_list = []
        for char in text:
            if char not in self.dict:
                continue
            text_list.append(self.dict[char])
        text = np.array(text_list)
        return text

    def decode(self, text_index, is_remove_duplicate=False):
        """ convert text-index into text-label. """
        char_list = []
        char_num = self.get_char_num()

        if self.loss_type == "attention":
            beg_idx = self.get_beg_end_flag_idx("beg")
            end_idx = self.get_beg_end_flag_idx("end")
            ignored_tokens = [beg_idx, end_idx]
        else:
            ignored_tokens = [char_num]

        for idx in range(len(text_index)):
            if text_index[idx] in ignored_tokens:
                continue
            if is_remove_duplicate:
                if idx > 0 and text_index[idx - 1] == text_index[idx]:
                    continue
T
tink2123 已提交
106
            char_list.append(self.character[int(text_index[idx])])
L
LDOUBLEV 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
        text = ''.join(char_list)
        return text

    def get_char_num(self):
        return len(self.character)

    def get_beg_end_flag_idx(self, beg_or_end):
        if self.loss_type == "attention":
            if beg_or_end == "beg":
                idx = np.array(self.dict[self.beg_str])
            elif beg_or_end == "end":
                idx = np.array(self.dict[self.end_str])
            else:
                assert False, "Unsupport type %s in get_beg_end_flag_idx"\
                    % beg_or_end
            return idx
        else:
            err = "error in get_beg_end_flag_idx when using the loss %s"\
                % (self.loss_type)
            assert False, err


def cal_predicts_accuracy(char_ops,
                          preds,
                          preds_lod,
                          labels,
                          labels_lod,
                          is_remove_duplicate=False):
    acc_num = 0
    img_num = 0
    for ino in range(len(labels_lod) - 1):
        beg_no = preds_lod[ino]
        end_no = preds_lod[ino + 1]
        preds_text = preds[beg_no:end_no].reshape(-1)
        preds_text = char_ops.decode(preds_text, is_remove_duplicate)

        beg_no = labels_lod[ino]
        end_no = labels_lod[ino + 1]
        labels_text = labels[beg_no:end_no].reshape(-1)
        labels_text = char_ops.decode(labels_text, is_remove_duplicate)
        img_num += 1

        if preds_text == labels_text:
            acc_num += 1
    acc = acc_num * 1.0 / img_num
T
tink2123 已提交
152 153
    return acc, acc_num, img_num

T
tink2123 已提交
154

T
tink2123 已提交
155
def cal_predicts_accuracy_srn(char_ops,
T
tink2123 已提交
156 157 158 159
                              preds,
                              labels,
                              max_text_len,
                              is_debug=False):
T
tink2123 已提交
160 161 162 163 164 165 166 167 168
    acc_num = 0
    img_num = 0

    total_len = preds.shape[0]
    img_num = int(total_len / max_text_len)
    for i in range(img_num):
        cur_label = []
        cur_pred = []
        for j in range(max_text_len):
T
tink2123 已提交
169
            if labels[j + i * max_text_len] != 37:  #0
T
tink2123 已提交
170 171 172 173 174
                cur_label.append(labels[j + i * max_text_len][0])
            else:
                break

        for j in range(max_text_len + 1):
T
tink2123 已提交
175 176
            if j < len(cur_label) and preds[j + i * max_text_len][
                    0] != cur_label[j]:
T
tink2123 已提交
177 178 179 180 181 182 183 184
                break
            elif j == len(cur_label) and j == max_text_len:
                acc_num += 1
                break
            elif j == len(cur_label) and preds[j + i * max_text_len][0] == 37:
                acc_num += 1
                break
    acc = acc_num * 1.0 / img_num
L
LDOUBLEV 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
    return acc, acc_num, img_num


def convert_rec_attention_infer_res(preds):
    img_num = preds.shape[0]
    target_lod = [0]
    convert_ids = []
    for ino in range(img_num):
        end_pos = np.where(preds[ino, :] == 1)[0]
        if len(end_pos) <= 1:
            text_list = preds[ino, 1:]
        else:
            text_list = preds[ino, 1:end_pos[1]]
        target_lod.append(target_lod[ino] + len(text_list))
        convert_ids = convert_ids + list(text_list)
    convert_ids = np.array(convert_ids)
    convert_ids = convert_ids.reshape((-1, 1))
    return convert_ids, target_lod


def convert_rec_label_to_lod(ori_labels):
    img_num = len(ori_labels)
    target_lod = [0]
    convert_ids = []
    for ino in range(img_num):
        target_lod.append(target_lod[ino] + len(ori_labels[ino]))
        convert_ids = convert_ids + list(ori_labels[ino])
    convert_ids = np.array(convert_ids)
    convert_ids = convert_ids.reshape((-1, 1))
    return convert_ids, target_lod