table_att_loss.py 4.4 KB
Newer Older
M
MissPenguin 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle
from paddle import nn
from paddle.nn import functional as F

class TableAttentionLoss(nn.Layer):
    def __init__(self, structure_weight, loc_weight, use_giou=False, giou_weight=1.0, **kwargs):
        super(TableAttentionLoss, self).__init__()
        self.loss_func = nn.CrossEntropyLoss(weight=None, reduction='none')
        self.structure_weight = structure_weight
        self.loc_weight = loc_weight
        self.use_giou = use_giou
        self.giou_weight = giou_weight
        
    def giou_loss(self, preds, bbox, eps=1e-7, reduction='mean'):
        '''
        :param preds:[[x1,y1,x2,y2], [x1,y1,x2,y2],,,]
        :param bbox:[[x1,y1,x2,y2], [x1,y1,x2,y2],,,]
        :return: loss
        '''
T
tink2123 已提交
38 39 40 41
        ix1 = paddle.maximum(preds[:, 0], bbox[:, 0])
        iy1 = paddle.maximum(preds[:, 1], bbox[:, 1])
        ix2 = paddle.minimum(preds[:, 2], bbox[:, 2])
        iy2 = paddle.minimum(preds[:, 3], bbox[:, 3])
M
MissPenguin 已提交
42

T
tink2123 已提交
43 44
        iw = paddle.clip(ix2 - ix1 + 1e-3, 0., 1e10)
        ih = paddle.clip(iy2 - iy1 + 1e-3, 0., 1e10)
M
MissPenguin 已提交
45 46 47 48 49 50 51 52 53 54 55 56

        # overlap
        inters = iw * ih

        # union
        uni = (preds[:, 2] - preds[:, 0] + 1e-3) * (preds[:, 3] - preds[:, 1] + 1e-3
            ) + (bbox[:, 2] - bbox[:, 0] + 1e-3) * (
            bbox[:, 3] - bbox[:, 1] + 1e-3) - inters + eps

        # ious
        ious = inters / uni

T
tink2123 已提交
57 58 59 60 61 62
        ex1 = paddle.minimum(preds[:, 0], bbox[:, 0])
        ey1 = paddle.minimum(preds[:, 1], bbox[:, 1])
        ex2 = paddle.maximum(preds[:, 2], bbox[:, 2])
        ey2 = paddle.maximum(preds[:, 3], bbox[:, 3])
        ew = paddle.clip(ex2 - ex1 + 1e-3, 0., 1e10)
        eh = paddle.clip(ey2 - ey1 + 1e-3, 0., 1e10)
M
MissPenguin 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108

        # enclose erea
        enclose = ew * eh + eps
        giou = ious - (enclose - uni) / enclose

        loss = 1 - giou

        if reduction == 'mean':
            loss = paddle.mean(loss)
        elif reduction == 'sum':
            loss = paddle.sum(loss)
        else:
            raise NotImplementedError
        return loss

    def forward(self, predicts, batch):
        structure_probs = predicts['structure_probs']
        structure_targets = batch[1].astype("int64")
        structure_targets = structure_targets[:, 1:]
        if len(batch) == 6:
            structure_mask = batch[5].astype("int64")
            structure_mask = structure_mask[:, 1:]
            structure_mask = paddle.reshape(structure_mask, [-1])
        structure_probs = paddle.reshape(structure_probs, [-1, structure_probs.shape[-1]])
        structure_targets = paddle.reshape(structure_targets, [-1])
        structure_loss = self.loss_func(structure_probs, structure_targets)
        
        if len(batch) == 6:
             structure_loss = structure_loss * structure_mask
            
#         structure_loss = paddle.sum(structure_loss) * self.structure_weight
        structure_loss = paddle.mean(structure_loss) * self.structure_weight
        
        loc_preds = predicts['loc_preds']
        loc_targets = batch[2].astype("float32")
        loc_targets_mask = batch[4].astype("float32")
        loc_targets = loc_targets[:, 1:, :]
        loc_targets_mask = loc_targets_mask[:, 1:, :]
        loc_loss = F.mse_loss(loc_preds * loc_targets_mask, loc_targets) * self.loc_weight
        if self.use_giou:
            loc_loss_giou = self.giou_loss(loc_preds * loc_targets_mask, loc_targets) * self.giou_weight
            total_loss = structure_loss + loc_loss + loc_loss_giou
            return {'loss':total_loss, "structure_loss":structure_loss, "loc_loss":loc_loss, "loc_loss_giou":loc_loss_giou}
        else:
            total_loss = structure_loss + loc_loss            
            return {'loss':total_loss, "structure_loss":structure_loss, "loc_loss":loc_loss}