rec_ctc_loss.py 1.3 KB
Newer Older
W
WenmuZhou 已提交
1
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
L
LDOUBLEV 已提交
2
#
W
WenmuZhou 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
L
LDOUBLEV 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
W
WenmuZhou 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
L
LDOUBLEV 已提交
14 15 16 17 18 19

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle
W
WenmuZhou 已提交
20
from paddle import nn
L
LDOUBLEV 已提交
21 22


W
WenmuZhou 已提交
23 24
class CTCLoss(nn.Layer):
    def __init__(self, **kwargs):
L
LDOUBLEV 已提交
25
        super(CTCLoss, self).__init__()
W
WenmuZhou 已提交
26
        self.loss_func = nn.CTCLoss(blank=0, reduction='none')
L
LDOUBLEV 已提交
27

W
WenmuZhou 已提交
28 29 30 31 32 33 34 35 36
    def __call__(self, predicts, batch):
        predicts = predicts.transpose((1, 0, 2))
        N, B, _ = predicts.shape
        preds_lengths = paddle.to_tensor([N] * B, dtype='int64')
        labels = batch[1].astype("int32")
        label_lengths = batch[2].astype('int64')
        loss = self.loss_func(predicts, labels, preds_lengths, label_lengths)
        loss = loss.mean()
        return {'loss': loss}