benchmark_utils.py 8.7 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import os
import time
import logging

import paddle
import paddle.inference as paddle_infer

from pathlib import Path

CUR_DIR = os.path.dirname(os.path.abspath(__file__))


class PaddleInferBenchmark(object):
    def __init__(self,
                 config,
                 model_info: dict={},
                 data_info: dict={},
                 perf_info: dict={},
                 resource_info: dict={},
                 save_log_path: str="",
                 **kwargs):
        """
        Construct PaddleInferBenchmark Class to format logs.
        args:
            config(paddle.inference.Config): paddle inference config
            model_info(dict): basic model info
                {'model_name': 'resnet50'
                 'precision': 'fp32'}
            data_info(dict): input data info
                {'batch_size': 1
                 'shape': '3,224,224'
                 'data_num': 1000}
            perf_info(dict): performance result
                {'preprocess_time_s': 1.0
                'inference_time_s': 2.0
                'postprocess_time_s': 1.0
                'total_time_s': 4.0}
            resource_info(dict): 
                cpu and gpu resources
                {'cpu_rss': 100
                 'gpu_rss': 100
                 'gpu_util': 60}
        """
        # PaddleInferBenchmark Log Version
        self.log_version = 1.0

        # Paddle Version
        self.paddle_version = paddle.__version__
        self.paddle_commit = paddle.__git_commit__
        paddle_infer_info = paddle_infer.get_version()
        self.paddle_branch = paddle_infer_info.strip().split(': ')[-1]

        # model info
        self.model_info = model_info

        # data info
        self.data_info = data_info

        # perf info
        self.perf_info = perf_info

        try:
            self.model_name = model_info['model_name']
            self.precision = model_info['precision']

            self.batch_size = data_info['batch_size']
            self.shape = data_info['shape']
            self.data_num = data_info['data_num']

            self.preprocess_time_s = round(perf_info['preprocess_time_s'], 4)
            self.inference_time_s = round(perf_info['inference_time_s'], 4)
            self.postprocess_time_s = round(perf_info['postprocess_time_s'], 4)
            self.total_time_s = round(perf_info['total_time_s'], 4)
        except:
            self.print_help()
            raise ValueError(
                "Set argument wrong, please check input argument and its type")

        # conf info
        self.config_status = self.parse_config(config)
        self.save_log_path = save_log_path
        # mem info
        if isinstance(resource_info, dict):
            self.cpu_rss_mb = int(resource_info.get('cpu_rss_mb', 0))
            self.gpu_rss_mb = int(resource_info.get('gpu_rss_mb', 0))
            self.gpu_util = round(resource_info.get('gpu_util', 0), 2)
        else:
            self.cpu_rss_mb = 0
            self.gpu_rss_mb = 0
            self.gpu_util = 0

        # init benchmark logger
        self.benchmark_logger()

    def benchmark_logger(self):
        """
        benchmark logger
        """
        # Init logger
        FORMAT = '%(asctime)s - %(name)s - %(levelname)s - %(message)s'
        log_output = f"{self.save_log_path}/{self.model_name}.log"
        Path(f"{self.save_log_path}").mkdir(parents=True, exist_ok=True)
        logging.basicConfig(
            level=logging.INFO,
            format=FORMAT,
            handlers=[
                logging.FileHandler(
                    filename=log_output, mode='w'),
                logging.StreamHandler(),
            ])
        self.logger = logging.getLogger(__name__)
        self.logger.info(
            f"Paddle Inference benchmark log will be saved to {log_output}")

    def parse_config(self, config) -> dict:
        """
        parse paddle predictor config
        args:
            config(paddle.inference.Config): paddle inference config
        return:
            config_status(dict): dict style config info
        """
        config_status = {}
        config_status['runtime_device'] = "gpu" if config.use_gpu() else "cpu"
        config_status['ir_optim'] = config.ir_optim()
        config_status['enable_tensorrt'] = config.tensorrt_engine_enabled()
        config_status['precision'] = self.precision
        config_status['enable_mkldnn'] = config.mkldnn_enabled()
        config_status[
            'cpu_math_library_num_threads'] = config.cpu_math_library_num_threads(
            )
        return config_status

    def report(self, identifier=None):
        """
        print log report
        args:
            identifier(string): identify log
        """
        if identifier:
            identifier = f"[{identifier}]"
        else:
            identifier = ""

        self.logger.info("\n")
        self.logger.info(
            "---------------------- Paddle info ----------------------")
        self.logger.info(f"{identifier} paddle_version: {self.paddle_version}")
        self.logger.info(f"{identifier} paddle_commit: {self.paddle_commit}")
        self.logger.info(f"{identifier} paddle_branch: {self.paddle_branch}")
        self.logger.info(f"{identifier} log_api_version: {self.log_version}")
        self.logger.info(
            "----------------------- Conf info -----------------------")
        self.logger.info(
            f"{identifier} runtime_device: {self.config_status['runtime_device']}"
        )
        self.logger.info(
            f"{identifier} ir_optim: {self.config_status['ir_optim']}")
        self.logger.info(f"{identifier} enable_memory_optim: {True}")
        self.logger.info(
            f"{identifier} enable_tensorrt: {self.config_status['enable_tensorrt']}"
        )
        self.logger.info(
            f"{identifier} enable_mkldnn: {self.config_status['enable_mkldnn']}")
        self.logger.info(
            f"{identifier} cpu_math_library_num_threads: {self.config_status['cpu_math_library_num_threads']}"
        )
        self.logger.info(
            "----------------------- Model info ----------------------")
        self.logger.info(f"{identifier} model_name: {self.model_name}")
        self.logger.info(f"{identifier} precision: {self.precision}")
        self.logger.info(
            "----------------------- Data info -----------------------")
        self.logger.info(f"{identifier} batch_size: {self.batch_size}")
        self.logger.info(f"{identifier} input_shape: {self.shape}")
        self.logger.info(f"{identifier} data_num: {self.data_num}")
        self.logger.info(
            "----------------------- Perf info -----------------------")
        self.logger.info(
            f"{identifier} cpu_rss(MB): {self.cpu_rss_mb}, gpu_rss(MB): {self.gpu_rss_mb}, gpu_util: {self.gpu_util}%"
        )
        self.logger.info(
            f"{identifier} total time spent(s): {self.total_time_s}")
        self.logger.info(
            f"{identifier} preprocess_time(ms): {round(self.preprocess_time_s*1000, 1)}, inference_time(ms): {round(self.inference_time_s*1000, 1)}, postprocess_time(ms): {round(self.postprocess_time_s*1000, 1)}"
        )

    def print_help(self):
        """
        print function help
        """
        print("""Usage: 
            ==== Print inference benchmark logs. ====
            config = paddle.inference.Config()
            model_info = {'model_name': 'resnet50'
                          'precision': 'fp32'}
            data_info = {'batch_size': 1
                         'shape': '3,224,224'
                         'data_num': 1000}
            perf_info = {'preprocess_time_s': 1.0
                         'inference_time_s': 2.0
                         'postprocess_time_s': 1.0
                         'total_time_s': 4.0}
            resource_info = {'cpu_rss_mb': 100
                             'gpu_rss_mb': 100
                             'gpu_util': 60}
            log = PaddleInferBenchmark(config, model_info, data_info, perf_info, resource_info)
            log('Test')
            """)

    def __call__(self, identifier=None):
        """
        __call__
        args:
            identifier(string): identify log
        """
        self.report(identifier)