rec_resnet_45.py 4.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from: 
https://github.com/FangShancheng/ABINet/tree/main/modules
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle
from paddle import ParamAttr
from paddle.nn.initializer import KaimingNormal
import paddle.nn as nn
import paddle.nn.functional as F
import numpy as np
import math

__all__ = ["ResNet45"]


def conv1x1(in_planes, out_planes, stride=1):
    return nn.Conv2D(
        in_planes,
        out_planes,
        kernel_size=1,
        stride=1,
        weight_attr=ParamAttr(initializer=KaimingNormal()),
        bias_attr=False)


def conv3x3(in_channel, out_channel, stride=1):
    return nn.Conv2D(
        in_channel,
        out_channel,
        kernel_size=3,
        stride=stride,
        padding=1,
        weight_attr=ParamAttr(initializer=KaimingNormal()),
        bias_attr=False)


class BasicBlock(nn.Layer):
    expansion = 1

    def __init__(self, in_channels, channels, stride=1, downsample=None):
        super().__init__()
        self.conv1 = conv1x1(in_channels, channels)
        self.bn1 = nn.BatchNorm2D(channels)
        self.relu = nn.ReLU()
        self.conv2 = conv3x3(channels, channels, stride)
        self.bn2 = nn.BatchNorm2D(channels)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            residual = self.downsample(x)
        out += residual
        out = self.relu(out)

        return out


class ResNet45(nn.Layer):
    def __init__(self, block=BasicBlock, layers=[3, 4, 6, 6, 3], in_channels=3):
        self.inplanes = 32
        super(ResNet45, self).__init__()
        self.conv1 = nn.Conv2D(
            3,
            32,
            kernel_size=3,
            stride=1,
            padding=1,
            weight_attr=ParamAttr(initializer=KaimingNormal()),
            bias_attr=False)
        self.bn1 = nn.BatchNorm2D(32)
        self.relu = nn.ReLU()

        self.layer1 = self._make_layer(block, 32, layers[0], stride=2)
        self.layer2 = self._make_layer(block, 64, layers[1], stride=1)
        self.layer3 = self._make_layer(block, 128, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 256, layers[3], stride=1)
        self.layer5 = self._make_layer(block, 512, layers[4], stride=1)
        self.out_channels = 512

        # for m in self.modules():
        #     if isinstance(m, nn.Conv2D):
        #         n = m._kernel_size[0] * m._kernel_size[1] * m._out_channels
        #         m.weight.data.normal_(0, math.sqrt(2. / n))

    def _make_layer(self, block, planes, blocks, stride=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            # downsample = True
            downsample = nn.Sequential(
                nn.Conv2D(
                    self.inplanes,
                    planes * block.expansion,
                    kernel_size=1,
                    stride=stride,
                    weight_attr=ParamAttr(initializer=KaimingNormal()),
                    bias_attr=False),
                nn.BatchNorm2D(planes * block.expansion), )

        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes))

        return nn.Sequential(*layers)

    def forward(self, x):

        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        # print(x)
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        # print(x)
        x = self.layer4(x)
        x = self.layer5(x)
        return x