predict_kie_token_ser_re.py 4.2 KB
Newer Older
文幕地方's avatar
文幕地方 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../..')))

os.environ["FLAGS_allocator_strategy"] = 'auto_growth'

import cv2
import json
import numpy as np
import time

import tools.infer.utility as utility
from tools.infer_kie_token_ser_re import make_input
from ppocr.postprocess import build_post_process
from ppocr.utils.logging import get_logger
from ppocr.utils.visual import draw_re_results
from ppocr.utils.utility import get_image_file_list, check_and_read
from ppstructure.utility import parse_args
from ppstructure.kie.predict_kie_token_ser import SerPredictor

from paddleocr import PaddleOCR

logger = get_logger()


class SerRePredictor(object):
    def __init__(self, args):
        self.use_visual_backbone = args.use_visual_backbone
        self.ser_engine = SerPredictor(args)

        postprocess_params = {'name': 'VQAReTokenLayoutLMPostProcess'}
        self.postprocess_op = build_post_process(postprocess_params)
        self.predictor, self.input_tensor, self.output_tensors, self.config = \
            utility.create_predictor(args, 're', logger)

    def __call__(self, img):
        ori_im = img.copy()
        starttime = time.time()
        ser_results, ser_inputs, _ = self.ser_engine(img)
        re_input, entity_idx_dict_batch = make_input(ser_inputs, ser_results)
        if self.use_visual_backbone == False:
            re_input.pop(4)
        for idx in range(len(self.input_tensor)):
            self.input_tensor[idx].copy_from_cpu(re_input[idx])

        self.predictor.run()
        outputs = []
        for output_tensor in self.output_tensors:
            output = output_tensor.copy_to_cpu()
            outputs.append(output)
文幕地方's avatar
fix bug  
文幕地方 已提交
67 68 69 70
        preds = dict(
            loss=outputs[1],
            pred_relations=outputs[2],
            hidden_states=outputs[0], )
文幕地方's avatar
文幕地方 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

        post_result = self.postprocess_op(
            preds,
            ser_results=ser_results,
            entity_idx_dict_batch=entity_idx_dict_batch)

        elapse = time.time() - starttime
        return post_result, elapse


def main(args):
    image_file_list = get_image_file_list(args.image_dir)
    ser_predictor = SerRePredictor(args)
    count = 0
    total_time = 0

    os.makedirs(args.output, exist_ok=True)
    with open(
            os.path.join(args.output, 'infer.txt'), mode='w',
            encoding='utf-8') as f_w:
        for image_file in image_file_list:
            img, flag, _ = check_and_read(image_file)
            if not flag:
                img = cv2.imread(image_file)
                img = img[:, :, ::-1]
            if img is None:
                logger.info("error in loading image:{}".format(image_file))
                continue
            re_res, elapse = ser_predictor(img)
            re_res = re_res[0]

            res_str = '{}\t{}\n'.format(
                image_file,
                json.dumps(
                    {
                        "ocr_info": re_res,
                    }, ensure_ascii=False))
            f_w.write(res_str)

            img_res = draw_re_results(
                image_file, re_res, font_path=args.vis_font_path)

            img_save_path = os.path.join(
                args.output,
                os.path.splitext(os.path.basename(image_file))[0] +
                "_ser_re.jpg")

            cv2.imwrite(img_save_path, img_res)
            logger.info("save vis result to {}".format(img_save_path))
            if count > 0:
                total_time += elapse
            count += 1
            logger.info("Predict time of {}: {}".format(image_file, elapse))


if __name__ == "__main__":
    main(parse_args())