character.py 6.0 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import string
import re
from .check import check_config_params
import sys


class CharacterOps(object):
    """ Convert between text-label and text-index """

    def __init__(self, config):
        self.character_type = config['character_type']
        self.loss_type = config['loss_type']
        if self.character_type == "en":
            self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
            dict_character = list(self.character_str)
        elif self.character_type == "ch":
            character_dict_path = config['character_dict_path']
            self.character_str = ""
            with open(character_dict_path, "rb") as fin:
                lines = fin.readlines()
                for line in lines:
T
tink2123 已提交
37
                    line = line.decode('utf-8').strip("\n").strip("\r\n")
L
LDOUBLEV 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
                    self.character_str += line
            dict_character = list(self.character_str)
        elif self.character_type == "en_sensitive":
            # same with ASTER setting (use 94 char).
            self.character_str = string.printable[:-6]
            dict_character = list(self.character_str)
        else:
            self.character_str = None
        assert self.character_str is not None, \
            "Nonsupport type of the character: {}".format(self.character_str)
        self.beg_str = "sos"
        self.end_str = "eos"
        if self.loss_type == "attention":
            dict_character = [self.beg_str, self.end_str] + dict_character
        self.dict = {}
        for i, char in enumerate(dict_character):
            self.dict[char] = i
        self.character = dict_character

    def encode(self, text):
        """convert text-label into text-index.
        input:
            text: text labels of each image. [batch_size]

        output:
            text: concatenated text index for CTCLoss.
                    [sum(text_lengths)] = [text_index_0 + text_index_1 + ... + text_index_(n - 1)]
            length: length of each text. [batch_size]
        """
T
tink2123 已提交
67
        if self.character_type == "en":
L
LDOUBLEV 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
            text = text.lower()

        text_list = []
        for char in text:
            if char not in self.dict:
                continue
            text_list.append(self.dict[char])
        text = np.array(text_list)
        return text

    def decode(self, text_index, is_remove_duplicate=False):
        """ convert text-index into text-label. """
        char_list = []
        char_num = self.get_char_num()

        if self.loss_type == "attention":
            beg_idx = self.get_beg_end_flag_idx("beg")
            end_idx = self.get_beg_end_flag_idx("end")
            ignored_tokens = [beg_idx, end_idx]
        else:
            ignored_tokens = [char_num]

        for idx in range(len(text_index)):
            if text_index[idx] in ignored_tokens:
                continue
            if is_remove_duplicate:
                if idx > 0 and text_index[idx - 1] == text_index[idx]:
                    continue
            char_list.append(self.character[text_index[idx]])
        text = ''.join(char_list)
        return text

    def get_char_num(self):
        return len(self.character)

    def get_beg_end_flag_idx(self, beg_or_end):
        if self.loss_type == "attention":
            if beg_or_end == "beg":
                idx = np.array(self.dict[self.beg_str])
            elif beg_or_end == "end":
                idx = np.array(self.dict[self.end_str])
            else:
                assert False, "Unsupport type %s in get_beg_end_flag_idx"\
                    % beg_or_end
            return idx
        else:
            err = "error in get_beg_end_flag_idx when using the loss %s"\
                % (self.loss_type)
            assert False, err


def cal_predicts_accuracy(char_ops,
                          preds,
                          preds_lod,
                          labels,
                          labels_lod,
                          is_remove_duplicate=False):
    acc_num = 0
    img_num = 0
    for ino in range(len(labels_lod) - 1):
        beg_no = preds_lod[ino]
        end_no = preds_lod[ino + 1]
        preds_text = preds[beg_no:end_no].reshape(-1)
        preds_text = char_ops.decode(preds_text, is_remove_duplicate)

        beg_no = labels_lod[ino]
        end_no = labels_lod[ino + 1]
        labels_text = labels[beg_no:end_no].reshape(-1)
        labels_text = char_ops.decode(labels_text, is_remove_duplicate)
        img_num += 1

        if preds_text == labels_text:
            acc_num += 1
    acc = acc_num * 1.0 / img_num
    return acc, acc_num, img_num


def convert_rec_attention_infer_res(preds):
    img_num = preds.shape[0]
    target_lod = [0]
    convert_ids = []
    for ino in range(img_num):
        end_pos = np.where(preds[ino, :] == 1)[0]
        if len(end_pos) <= 1:
            text_list = preds[ino, 1:]
        else:
            text_list = preds[ino, 1:end_pos[1]]
        target_lod.append(target_lod[ino] + len(text_list))
        convert_ids = convert_ids + list(text_list)
    convert_ids = np.array(convert_ids)
    convert_ids = convert_ids.reshape((-1, 1))
    return convert_ids, target_lod


def convert_rec_label_to_lod(ori_labels):
    img_num = len(ori_labels)
    target_lod = [0]
    convert_ids = []
    for ino in range(img_num):
        target_lod.append(target_lod[ino] + len(ori_labels[ino]))
        convert_ids = convert_ids + list(ori_labels[ino])
    convert_ids = np.array(convert_ids)
    convert_ids = convert_ids.reshape((-1, 1))
    return convert_ids, target_lod