# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.## Licensed under the Apache License, Version 2.0 (the "License");# you may not use this file except in compliance with the License.# You may obtain a copy of the License at## http://www.apache.org/licenses/LICENSE-2.0## Unless required by applicable law or agreed to in writing, software# distributed under the License is distributed on an "AS IS" BASIS,# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.# See the License for the specific language governing permissions and# limitations under the License.from__future__importabsolute_importfrom__future__importdivisionfrom__future__importprint_functionimportpaddlefrompaddleimportnnclassAttentionLoss(nn.Layer):def__init__(self,**kwargs):super(AttentionLoss,self).__init__()self.loss_func=nn.CrossEntropyLoss(weight=None,reduction='none')defforward(self,predicts,batch):targets=batch[1].astype("int64")label_lengths=batch[2].astype('int64')batch_size,num_steps,num_classes=predicts.shape[0],predicts.shape[1],predicts.shape[2]assertlen(targets.shape)==len(list(predicts.shape))-1, \"The target's shape and inputs's shape is [N, d] and [N, num_steps]"inputs=paddle.reshape(predicts,[-1,predicts.shape[-1]])targets=paddle.reshape(targets,[-1])return{'loss':paddle.sum(self.loss_func(inputs,targets))}