eval.py 5.5 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

L
LDOUBLEV 已提交
19 20
import os
import sys
W
WenmuZhou 已提交
21

22
__dir__ = os.path.dirname(os.path.abspath(__file__))
littletomatodonkey's avatar
littletomatodonkey 已提交
23 24
sys.path.insert(0, __dir__)
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '..')))
L
LDOUBLEV 已提交
25

文幕地方's avatar
文幕地方 已提交
26
import paddle
W
WenmuZhou 已提交
27
from ppocr.data import build_dataloader
W
WenmuZhou 已提交
28
from ppocr.modeling.architectures import build_model
W
WenmuZhou 已提交
29 30
from ppocr.postprocess import build_post_process
from ppocr.metrics import build_metric
31
from ppocr.utils.save_load import load_model
W
WenmuZhou 已提交
32
import tools.program as program
L
LDOUBLEV 已提交
33 34


W
WenmuZhou 已提交
35 36 37
def main():
    global_config = config['Global']
    # build dataloader
W
WenmuZhou 已提交
38
    valid_dataloader = build_dataloader(config, 'Eval', device, logger)
L
LDOUBLEV 已提交
39

W
WenmuZhou 已提交
40 41 42
    # build post process
    post_process_class = build_post_process(config['PostProcess'],
                                            global_config)
L
LDOUBLEV 已提交
43

W
WenmuZhou 已提交
44 45 46
    # build model
    # for rec algorithm
    if hasattr(post_process_class, 'character'):
47 48 49 50
        char_num = len(getattr(post_process_class, 'character'))
        if config['Architecture']["algorithm"] in ["Distillation",
                                                   ]:  # distillation model
            for key in config['Architecture']["Models"]:
A
andyjpaddle 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
                if config['Architecture']['Models'][key]['Head'][
                        'name'] == 'MultiHead':  # for multi head
                    out_channels_list = {}
                    if config['PostProcess'][
                            'name'] == 'DistillationSARLabelDecode':
                        char_num = char_num - 2
                    out_channels_list['CTCLabelDecode'] = char_num
                    out_channels_list['SARLabelDecode'] = char_num + 2
                    config['Architecture']['Models'][key]['Head'][
                        'out_channels_list'] = out_channels_list
                else:
                    config['Architecture']["Models"][key]["Head"][
                        'out_channels'] = char_num
        elif config['Architecture']['Head'][
                'name'] == 'MultiHead':  # for multi head
            out_channels_list = {}
            if config['PostProcess']['name'] == 'SARLabelDecode':
                char_num = char_num - 2
            out_channels_list['CTCLabelDecode'] = char_num
            out_channels_list['SARLabelDecode'] = char_num + 2
            config['Architecture']['Head'][
                'out_channels_list'] = out_channels_list
73 74 75
        else:  # base rec model
            config['Architecture']["Head"]['out_channels'] = char_num

W
WenmuZhou 已提交
76
    model = build_model(config['Architecture'])
D
dorren 已提交
77
    extra_input_models = [
78 79
        "SRN", "NRTR", "SAR", "SEED", "SVTR", "SVTR_LCNet", "VisionLAN",
        "RobustScanner"
D
dorren 已提交
80
    ]
A
andyjpaddle 已提交
81
    extra_input = False
A
andyjpaddle 已提交
82
    if config['Architecture']['algorithm'] == 'Distillation':
A
andyjpaddle 已提交
83 84 85
        for key in config['Architecture']["Models"]:
            extra_input = extra_input or config['Architecture']['Models'][key][
                'algorithm'] in extra_input_models
A
andyjpaddle 已提交
86 87
    else:
        extra_input = config['Architecture']['algorithm'] in extra_input_models
D
fix ci  
Double_V 已提交
88
    if "model_type" in config['Architecture'].keys():
D
dorren 已提交
89 90 91 92
        if config['Architecture']['algorithm'] == 'CAN':
            model_type = 'can'
        else:
            model_type = config['Architecture']['model_type']
D
fix ci  
Double_V 已提交
93 94
    else:
        model_type = None
L
LDOUBLEV 已提交
95

文幕地方's avatar
文幕地方 已提交
96 97 98 99 100
    # build metric
    eval_class = build_metric(config['Metric'])
    # amp
    use_amp = config["Global"].get("use_amp", False)
    amp_level = config["Global"].get("amp_level", 'O2')
D
dorren 已提交
101
    amp_custom_black_list = config['Global'].get('amp_custom_black_list', [])
文幕地方's avatar
文幕地方 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
    if use_amp:
        AMP_RELATED_FLAGS_SETTING = {
            'FLAGS_cudnn_batchnorm_spatial_persistent': 1,
            'FLAGS_max_inplace_grad_add': 8,
        }
        paddle.fluid.set_flags(AMP_RELATED_FLAGS_SETTING)
        scale_loss = config["Global"].get("scale_loss", 1.0)
        use_dynamic_loss_scaling = config["Global"].get(
            "use_dynamic_loss_scaling", False)
        scaler = paddle.amp.GradScaler(
            init_loss_scaling=scale_loss,
            use_dynamic_loss_scaling=use_dynamic_loss_scaling)
        if amp_level == "O2":
            model = paddle.amp.decorate(
                models=model, level=amp_level, master_weight=True)
    else:
        scaler = None

120 121
    best_model_dict = load_model(
        config, model, model_type=config['Architecture']["model_type"])
W
WenmuZhou 已提交
122 123 124 125
    if len(best_model_dict):
        logger.info('metric in ckpt ***************')
        for k, v in best_model_dict.items():
            logger.info('{}:{}'.format(k, v))
L
LDOUBLEV 已提交
126

W
WenmuZhou 已提交
127
    # start eval
W
WenmuZhou 已提交
128
    metric = program.eval(model, valid_dataloader, post_process_class,
D
dorren 已提交
129 130
                          eval_class, model_type, extra_input, scaler,
                          amp_level, amp_custom_black_list)
W
WenmuZhou 已提交
131
    logger.info('metric eval ***************')
W
WenmuZhou 已提交
132
    for k, v in metric.items():
W
WenmuZhou 已提交
133
        logger.info('{}:{}'.format(k, v))
L
LDOUBLEV 已提交
134 135 136


if __name__ == '__main__':
W
WenmuZhou 已提交
137
    config, device, logger, vdl_writer = program.preprocess()
L
LDOUBLEV 已提交
138
    main()