eval_ser.py 5.0 KB
Newer Older
Z
zhoujun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))

import random
import time
import copy
import logging

import argparse
import paddle
import numpy as np
from seqeval.metrics import classification_report, f1_score, precision_score, recall_score
from paddlenlp.transformers import LayoutXLMModel, LayoutXLMTokenizer, LayoutXLMForTokenClassification
from xfun import XFUNDataset
from utils import parse_args, get_bio_label_maps, print_arguments

from ppocr.utils.logging import get_logger


def eval(args):
    logger = get_logger()
    print_arguments(args, logger)

    label2id_map, id2label_map = get_bio_label_maps(args.label_map_path)
    pad_token_label_id = paddle.nn.CrossEntropyLoss().ignore_index

    tokenizer = LayoutXLMTokenizer.from_pretrained(args.model_name_or_path)
    model = LayoutXLMForTokenClassification.from_pretrained(
        args.model_name_or_path)

    eval_dataset = XFUNDataset(
        tokenizer,
        data_dir=args.eval_data_dir,
        label_path=args.eval_label_path,
        label2id_map=label2id_map,
        img_size=(224, 224),
        pad_token_label_id=pad_token_label_id,
        contains_re=False,
        add_special_ids=False,
        return_attention_mask=True,
        load_mode='all')

    eval_dataloader = paddle.io.DataLoader(
        eval_dataset,
        batch_size=args.per_gpu_eval_batch_size,
        num_workers=0,
        use_shared_memory=True,
        collate_fn=None, )

    results, _ = evaluate(args, model, tokenizer, eval_dataloader, label2id_map,
                          id2label_map, pad_token_label_id, logger)

    logger.info(results)


def evaluate(args,
             model,
             tokenizer,
             eval_dataloader,
             label2id_map,
             id2label_map,
             pad_token_label_id,
             logger,
             prefix=""):

    eval_loss = 0.0
    nb_eval_steps = 0
    preds = None
    out_label_ids = None
    model.eval()
    for idx, batch in enumerate(eval_dataloader):
        with paddle.no_grad():
            outputs = model(**batch)
            tmp_eval_loss, logits = outputs[:2]

            tmp_eval_loss = tmp_eval_loss.mean()

            if paddle.distributed.get_rank() == 0:
                logger.info("[Eval]process: {}/{}, loss: {:.5f}".format(
                    idx, len(eval_dataloader), tmp_eval_loss.numpy()[0]))

            eval_loss += tmp_eval_loss.item()
        nb_eval_steps += 1
        if preds is None:
            preds = logits.numpy()
            out_label_ids = batch["labels"].numpy()
        else:
            preds = np.append(preds, logits.numpy(), axis=0)
            out_label_ids = np.append(
                out_label_ids, batch["labels"].numpy(), axis=0)

    eval_loss = eval_loss / nb_eval_steps
    preds = np.argmax(preds, axis=2)

    # label_map = {i: label.upper() for i, label in enumerate(labels)}

    out_label_list = [[] for _ in range(out_label_ids.shape[0])]
    preds_list = [[] for _ in range(out_label_ids.shape[0])]

    for i in range(out_label_ids.shape[0]):
        for j in range(out_label_ids.shape[1]):
            if out_label_ids[i, j] != pad_token_label_id:
                out_label_list[i].append(id2label_map[out_label_ids[i][j]])
                preds_list[i].append(id2label_map[preds[i][j]])

    results = {
        "loss": eval_loss,
        "precision": precision_score(out_label_list, preds_list),
        "recall": recall_score(out_label_list, preds_list),
        "f1": f1_score(out_label_list, preds_list),
    }

文幕地方's avatar
文幕地方 已提交
131 132 133
    with open(
            os.path.join(args.output_dir, "test_gt.txt"), "w",
            encoding='utf-8') as fout:
Z
zhoujun 已提交
134 135 136 137
        for lbl in out_label_list:
            for l in lbl:
                fout.write(l + "\t")
            fout.write("\n")
文幕地方's avatar
文幕地方 已提交
138 139 140
    with open(
            os.path.join(args.output_dir, "test_pred.txt"), "w",
            encoding='utf-8') as fout:
Z
zhoujun 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
        for lbl in preds_list:
            for l in lbl:
                fout.write(l + "\t")
            fout.write("\n")

    report = classification_report(out_label_list, preds_list)
    logger.info("\n" + report)

    logger.info("***** Eval results %s *****", prefix)
    for key in sorted(results.keys()):
        logger.info("  %s = %s", key, str(results[key]))
    model.train()
    return results, preds_list


if __name__ == "__main__":
    args = parse_args()
    eval(args)