stl_bind.h 20.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
/*
    pybind11/std_bind.h: Binding generators for STL data types

    Copyright (c) 2016 Sergey Lyskov and Wenzel Jakob

    All rights reserved. Use of this source code is governed by a
    BSD-style license that can be found in the LICENSE file.
*/

#pragma once

#include "common.h"
#include "operators.h"

#include <algorithm>
#include <sstream>

NAMESPACE_BEGIN(pybind11)
NAMESPACE_BEGIN(detail)

/* SFINAE helper class used by 'is_comparable */
template <typename T>  struct container_traits {
    template <typename T2> static std::true_type test_comparable(decltype(std::declval<const T2 &>() == std::declval<const T2 &>())*);
    template <typename T2> static std::false_type test_comparable(...);
    template <typename T2> static std::true_type test_value(typename T2::value_type *);
    template <typename T2> static std::false_type test_value(...);
    template <typename T2> static std::true_type test_pair(typename T2::first_type *, typename T2::second_type *);
    template <typename T2> static std::false_type test_pair(...);

    static constexpr const bool is_comparable = std::is_same<std::true_type, decltype(test_comparable<T>(nullptr))>::value;
    static constexpr const bool is_pair = std::is_same<std::true_type, decltype(test_pair<T>(nullptr, nullptr))>::value;
    static constexpr const bool is_vector = std::is_same<std::true_type, decltype(test_value<T>(nullptr))>::value;
    static constexpr const bool is_element = !is_pair && !is_vector;
};

/* Default: is_comparable -> std::false_type */
template <typename T, typename SFINAE = void>
struct is_comparable : std::false_type { };

/* For non-map data structures, check whether operator== can be instantiated */
template <typename T>
struct is_comparable<
    T, enable_if_t<container_traits<T>::is_element &&
                   container_traits<T>::is_comparable>>
    : std::true_type { };

/* For a vector/map data structure, recursively check the value type (which is std::pair for maps) */
template <typename T>
struct is_comparable<T, enable_if_t<container_traits<T>::is_vector>> {
    static constexpr const bool value =
        is_comparable<typename T::value_type>::value;
};

/* For pairs, recursively check the two data types */
template <typename T>
struct is_comparable<T, enable_if_t<container_traits<T>::is_pair>> {
    static constexpr const bool value =
        is_comparable<typename T::first_type>::value &&
        is_comparable<typename T::second_type>::value;
};

/* Fallback functions */
template <typename, typename, typename... Args> void vector_if_copy_constructible(const Args &...) { }
template <typename, typename, typename... Args> void vector_if_equal_operator(const Args &...) { }
template <typename, typename, typename... Args> void vector_if_insertion_operator(const Args &...) { }
template <typename, typename, typename... Args> void vector_modifiers(const Args &...) { }

template<typename Vector, typename Class_>
void vector_if_copy_constructible(enable_if_t<is_copy_constructible<Vector>::value, Class_> &cl) {
    cl.def(init<const Vector &>(), "Copy constructor");
}

template<typename Vector, typename Class_>
void vector_if_equal_operator(enable_if_t<is_comparable<Vector>::value, Class_> &cl) {
    using T = typename Vector::value_type;

    cl.def(self == self);
    cl.def(self != self);

    cl.def("count",
        [](const Vector &v, const T &x) {
            return std::count(v.begin(), v.end(), x);
        },
        arg("x"),
        "Return the number of times ``x`` appears in the list"
    );

    cl.def("remove", [](Vector &v, const T &x) {
            auto p = std::find(v.begin(), v.end(), x);
            if (p != v.end())
                v.erase(p);
            else
                throw value_error();
        },
        arg("x"),
        "Remove the first item from the list whose value is x. "
        "It is an error if there is no such item."
    );

    cl.def("__contains__",
        [](const Vector &v, const T &x) {
            return std::find(v.begin(), v.end(), x) != v.end();
        },
        arg("x"),
        "Return true the container contains ``x``"
    );
}

// Vector modifiers -- requires a copyable vector_type:
// (Technically, some of these (pop and __delitem__) don't actually require copyability, but it seems
// silly to allow deletion but not insertion, so include them here too.)
template <typename Vector, typename Class_>
void vector_modifiers(enable_if_t<is_copy_constructible<typename Vector::value_type>::value, Class_> &cl) {
    using T = typename Vector::value_type;
    using SizeType = typename Vector::size_type;
    using DiffType = typename Vector::difference_type;

    cl.def("append",
           [](Vector &v, const T &value) { v.push_back(value); },
           arg("x"),
           "Add an item to the end of the list");

    cl.def("__init__", [](Vector &v, iterable it) {
        new (&v) Vector();
        try {
            v.reserve(len(it));
            for (handle h : it)
               v.push_back(h.cast<T>());
        } catch (...) {
            v.~Vector();
            throw;
        }
    });

    cl.def("extend",
       [](Vector &v, const Vector &src) {
           v.insert(v.end(), src.begin(), src.end());
       },
       arg("L"),
       "Extend the list by appending all the items in the given list"
    );

    cl.def("insert",
        [](Vector &v, SizeType i, const T &x) {
            if (i > v.size())
                throw index_error();
            v.insert(v.begin() + (DiffType) i, x);
        },
        arg("i") , arg("x"),
        "Insert an item at a given position."
    );

    cl.def("pop",
        [](Vector &v) {
            if (v.empty())
                throw index_error();
            T t = v.back();
            v.pop_back();
            return t;
        },
        "Remove and return the last item"
    );

    cl.def("pop",
        [](Vector &v, SizeType i) {
            if (i >= v.size())
                throw index_error();
            T t = v[i];
            v.erase(v.begin() + (DiffType) i);
            return t;
        },
        arg("i"),
        "Remove and return the item at index ``i``"
    );

    cl.def("__setitem__",
        [](Vector &v, SizeType i, const T &t) {
            if (i >= v.size())
                throw index_error();
            v[i] = t;
        }
    );

    /// Slicing protocol
    cl.def("__getitem__",
        [](const Vector &v, slice slice) -> Vector * {
            size_t start, stop, step, slicelength;

            if (!slice.compute(v.size(), &start, &stop, &step, &slicelength))
                throw error_already_set();

            Vector *seq = new Vector();
            seq->reserve((size_t) slicelength);

            for (size_t i=0; i<slicelength; ++i) {
                seq->push_back(v[start]);
                start += step;
            }
            return seq;
        },
        arg("s"),
        "Retrieve list elements using a slice object"
    );

    cl.def("__setitem__",
        [](Vector &v, slice slice,  const Vector &value) {
            size_t start, stop, step, slicelength;
            if (!slice.compute(v.size(), &start, &stop, &step, &slicelength))
                throw error_already_set();

            if (slicelength != value.size())
                throw std::runtime_error("Left and right hand size of slice assignment have different sizes!");

            for (size_t i=0; i<slicelength; ++i) {
                v[start] = value[i];
                start += step;
            }
        },
        "Assign list elements using a slice object"
    );

    cl.def("__delitem__",
        [](Vector &v, SizeType i) {
            if (i >= v.size())
                throw index_error();
            v.erase(v.begin() + DiffType(i));
        },
        "Delete the list elements at index ``i``"
    );

    cl.def("__delitem__",
        [](Vector &v, slice slice) {
            size_t start, stop, step, slicelength;

            if (!slice.compute(v.size(), &start, &stop, &step, &slicelength))
                throw error_already_set();

            if (step == 1 && false) {
                v.erase(v.begin() + (DiffType) start, v.begin() + DiffType(start + slicelength));
            } else {
                for (size_t i = 0; i < slicelength; ++i) {
                    v.erase(v.begin() + DiffType(start));
                    start += step - 1;
                }
            }
        },
        "Delete list elements using a slice object"
    );

}

// If the type has an operator[] that doesn't return a reference (most notably std::vector<bool>),
// we have to access by copying; otherwise we return by reference.
template <typename Vector> using vector_needs_copy = negation<
    std::is_same<decltype(std::declval<Vector>()[typename Vector::size_type()]), typename Vector::value_type &>>;

// The usual case: access and iterate by reference
template <typename Vector, typename Class_>
void vector_accessor(enable_if_t<!vector_needs_copy<Vector>::value, Class_> &cl) {
    using T = typename Vector::value_type;
    using SizeType = typename Vector::size_type;
    using ItType   = typename Vector::iterator;

    cl.def("__getitem__",
        [](Vector &v, SizeType i) -> T & {
            if (i >= v.size())
                throw index_error();
            return v[i];
        },
        return_value_policy::reference_internal // ref + keepalive
    );

    cl.def("__iter__",
           [](Vector &v) {
               return make_iterator<
                   return_value_policy::reference_internal, ItType, ItType, T&>(
                   v.begin(), v.end());
           },
           keep_alive<0, 1>() /* Essential: keep list alive while iterator exists */
    );
}

// The case for special objects, like std::vector<bool>, that have to be returned-by-copy:
template <typename Vector, typename Class_>
void vector_accessor(enable_if_t<vector_needs_copy<Vector>::value, Class_> &cl) {
    using T = typename Vector::value_type;
    using SizeType = typename Vector::size_type;
    using ItType   = typename Vector::iterator;
    cl.def("__getitem__",
        [](const Vector &v, SizeType i) -> T {
            if (i >= v.size())
                throw index_error();
            return v[i];
        }
    );

    cl.def("__iter__",
           [](Vector &v) {
               return make_iterator<
                   return_value_policy::copy, ItType, ItType, T>(
                   v.begin(), v.end());
           },
           keep_alive<0, 1>() /* Essential: keep list alive while iterator exists */
    );
}

template <typename Vector, typename Class_> auto vector_if_insertion_operator(Class_ &cl, std::string const &name)
    -> decltype(std::declval<std::ostream&>() << std::declval<typename Vector::value_type>(), void()) {
    using size_type = typename Vector::size_type;

    cl.def("__repr__",
           [name](Vector &v) {
            std::ostringstream s;
            s << name << '[';
            for (size_type i=0; i < v.size(); ++i) {
                s << v[i];
                if (i != v.size() - 1)
                    s << ", ";
            }
            s << ']';
            return s.str();
        },
        "Return the canonical string representation of this list."
    );
}

// Provide the buffer interface for vectors if we have data() and we have a format for it
// GCC seems to have "void std::vector<bool>::data()" - doing SFINAE on the existence of data() is insufficient, we need to check it returns an appropriate pointer
template <typename Vector, typename = void>
struct vector_has_data_and_format : std::false_type {};
template <typename Vector>
struct vector_has_data_and_format<Vector, enable_if_t<std::is_same<decltype(format_descriptor<typename Vector::value_type>::format(), std::declval<Vector>().data()), typename Vector::value_type*>::value>> : std::true_type {};

// Add the buffer interface to a vector
template <typename Vector, typename Class_, typename... Args>
enable_if_t<detail::any_of<std::is_same<Args, buffer_protocol>...>::value>
vector_buffer(Class_& cl) {
    using T = typename Vector::value_type;

    static_assert(vector_has_data_and_format<Vector>::value, "There is not an appropriate format descriptor for this vector");

    // numpy.h declares this for arbitrary types, but it may raise an exception and crash hard at runtime if PYBIND11_NUMPY_DTYPE hasn't been called, so check here
    format_descriptor<T>::format();

    cl.def_buffer([](Vector& v) -> buffer_info {
        return buffer_info(v.data(), static_cast<ssize_t>(sizeof(T)), format_descriptor<T>::format(), 1, {v.size()}, {sizeof(T)});
    });

    cl.def("__init__", [](Vector& vec, buffer buf) {
        auto info = buf.request();
        if (info.ndim != 1 || info.strides[0] % static_cast<ssize_t>(sizeof(T)))
            throw type_error("Only valid 1D buffers can be copied to a vector");
        if (!detail::compare_buffer_info<T>::compare(info) || (ssize_t) sizeof(T) != info.itemsize)
            throw type_error("Format mismatch (Python: " + info.format + " C++: " + format_descriptor<T>::format() + ")");
        new (&vec) Vector();
        vec.reserve((size_t) info.shape[0]);
        T *p = static_cast<T*>(info.ptr);
        ssize_t step = info.strides[0] / static_cast<ssize_t>(sizeof(T));
        T *end = p + info.shape[0] * step;
        for (; p != end; p += step)
            vec.push_back(*p);
    });

    return;
}

template <typename Vector, typename Class_, typename... Args>
enable_if_t<!detail::any_of<std::is_same<Args, buffer_protocol>...>::value> vector_buffer(Class_&) {}

NAMESPACE_END(detail)

//
// std::vector
//
template <typename Vector, typename holder_type = std::unique_ptr<Vector>, typename... Args>
class_<Vector, holder_type> bind_vector(module &m, std::string const &name, Args&&... args) {
    using Class_ = class_<Vector, holder_type>;

    Class_ cl(m, name.c_str(), std::forward<Args>(args)...);

    // Declare the buffer interface if a buffer_protocol() is passed in
    detail::vector_buffer<Vector, Class_, Args...>(cl);

    cl.def(init<>());

    // Register copy constructor (if possible)
    detail::vector_if_copy_constructible<Vector, Class_>(cl);

    // Register comparison-related operators and functions (if possible)
    detail::vector_if_equal_operator<Vector, Class_>(cl);

    // Register stream insertion operator (if possible)
    detail::vector_if_insertion_operator<Vector, Class_>(cl, name);

    // Modifiers require copyable vector value type
    detail::vector_modifiers<Vector, Class_>(cl);

    // Accessor and iterator; return by value if copyable, otherwise we return by ref + keep-alive
    detail::vector_accessor<Vector, Class_>(cl);

    cl.def("__bool__",
        [](const Vector &v) -> bool {
            return !v.empty();
        },
        "Check whether the list is nonempty"
    );

    cl.def("__len__", &Vector::size);




#if 0
    // C++ style functions deprecated, leaving it here as an example
    cl.def(init<size_type>());

    cl.def("resize",
         (void (Vector::*) (size_type count)) & Vector::resize,
         "changes the number of elements stored");

    cl.def("erase",
        [](Vector &v, SizeType i) {
        if (i >= v.size())
            throw index_error();
        v.erase(v.begin() + i);
    }, "erases element at index ``i``");

    cl.def("empty",         &Vector::empty,         "checks whether the container is empty");
    cl.def("size",          &Vector::size,          "returns the number of elements");
    cl.def("push_back", (void (Vector::*)(const T&)) &Vector::push_back, "adds an element to the end");
    cl.def("pop_back",                               &Vector::pop_back, "removes the last element");

    cl.def("max_size",      &Vector::max_size,      "returns the maximum possible number of elements");
    cl.def("reserve",       &Vector::reserve,       "reserves storage");
    cl.def("capacity",      &Vector::capacity,      "returns the number of elements that can be held in currently allocated storage");
    cl.def("shrink_to_fit", &Vector::shrink_to_fit, "reduces memory usage by freeing unused memory");

    cl.def("clear", &Vector::clear, "clears the contents");
    cl.def("swap",   &Vector::swap, "swaps the contents");

    cl.def("front", [](Vector &v) {
        if (v.size()) return v.front();
        else throw index_error();
    }, "access the first element");

    cl.def("back", [](Vector &v) {
        if (v.size()) return v.back();
        else throw index_error();
    }, "access the last element ");

#endif

    return cl;
}



//
// std::map, std::unordered_map
//

NAMESPACE_BEGIN(detail)

/* Fallback functions */
template <typename, typename, typename... Args> void map_if_insertion_operator(const Args &...) { }
template <typename, typename, typename... Args> void map_assignment(const Args &...) { }

// Map assignment when copy-assignable: just copy the value
template <typename Map, typename Class_>
void map_assignment(enable_if_t<std::is_copy_assignable<typename Map::mapped_type>::value, Class_> &cl) {
    using KeyType = typename Map::key_type;
    using MappedType = typename Map::mapped_type;

    cl.def("__setitem__",
           [](Map &m, const KeyType &k, const MappedType &v) {
               auto it = m.find(k);
               if (it != m.end()) it->second = v;
               else m.emplace(k, v);
           }
    );
}

// Not copy-assignable, but still copy-constructible: we can update the value by erasing and reinserting
template<typename Map, typename Class_>
void map_assignment(enable_if_t<
        !std::is_copy_assignable<typename Map::mapped_type>::value &&
        is_copy_constructible<typename Map::mapped_type>::value,
        Class_> &cl) {
    using KeyType = typename Map::key_type;
    using MappedType = typename Map::mapped_type;

    cl.def("__setitem__",
           [](Map &m, const KeyType &k, const MappedType &v) {
               // We can't use m[k] = v; because value type might not be default constructable
               auto r = m.emplace(k, v);
               if (!r.second) {
                   // value type is not copy assignable so the only way to insert it is to erase it first...
                   m.erase(r.first);
                   m.emplace(k, v);
               }
           }
    );
}


template <typename Map, typename Class_> auto map_if_insertion_operator(Class_ &cl, std::string const &name)
-> decltype(std::declval<std::ostream&>() << std::declval<typename Map::key_type>() << std::declval<typename Map::mapped_type>(), void()) {

    cl.def("__repr__",
           [name](Map &m) {
            std::ostringstream s;
            s << name << '{';
            bool f = false;
            for (auto const &kv : m) {
                if (f)
                    s << ", ";
                s << kv.first << ": " << kv.second;
                f = true;
            }
            s << '}';
            return s.str();
        },
        "Return the canonical string representation of this map."
    );
}


NAMESPACE_END(detail)

template <typename Map, typename holder_type = std::unique_ptr<Map>, typename... Args>
class_<Map, holder_type> bind_map(module &m, const std::string &name, Args&&... args) {
    using KeyType = typename Map::key_type;
    using MappedType = typename Map::mapped_type;
    using Class_ = class_<Map, holder_type>;

    Class_ cl(m, name.c_str(), std::forward<Args>(args)...);

    cl.def(init<>());

    // Register stream insertion operator (if possible)
    detail::map_if_insertion_operator<Map, Class_>(cl, name);

    cl.def("__bool__",
        [](const Map &m) -> bool { return !m.empty(); },
        "Check whether the map is nonempty"
    );

    cl.def("__iter__",
           [](Map &m) { return make_key_iterator(m.begin(), m.end()); },
           keep_alive<0, 1>() /* Essential: keep list alive while iterator exists */
    );

    cl.def("items",
           [](Map &m) { return make_iterator(m.begin(), m.end()); },
           keep_alive<0, 1>() /* Essential: keep list alive while iterator exists */
    );

    cl.def("__getitem__",
        [](Map &m, const KeyType &k) -> MappedType & {
            auto it = m.find(k);
            if (it == m.end())
              throw key_error();
           return it->second;
        },
        return_value_policy::reference_internal // ref + keepalive
    );

    // Assignment provided only if the type is copyable
    detail::map_assignment<Map, Class_>(cl);

    cl.def("__delitem__",
           [](Map &m, const KeyType &k) {
               auto it = m.find(k);
               if (it == m.end())
                   throw key_error();
               return m.erase(it);
           }
    );

    cl.def("__len__", &Map::size);

    return cl;
}

NAMESPACE_END(pybind11)