pybind11.h 82.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
/*
    pybind11/pybind11.h: Main header file of the C++11 python
    binding generator library

    Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>

    All rights reserved. Use of this source code is governed by a
    BSD-style license that can be found in the LICENSE file.
*/

#pragma once

#if defined(_MSC_VER)
#  pragma warning(push)
#  pragma warning(disable: 4100) // warning C4100: Unreferenced formal parameter
#  pragma warning(disable: 4127) // warning C4127: Conditional expression is constant
#  pragma warning(disable: 4512) // warning C4512: Assignment operator was implicitly defined as deleted
#  pragma warning(disable: 4800) // warning C4800: 'int': forcing value to bool 'true' or 'false' (performance warning)
#  pragma warning(disable: 4996) // warning C4996: The POSIX name for this item is deprecated. Instead, use the ISO C and C++ conformant name
#  pragma warning(disable: 4702) // warning C4702: unreachable code
#  pragma warning(disable: 4522) // warning C4522: multiple assignment operators specified
#elif defined(__INTEL_COMPILER)
#  pragma warning(push)
#  pragma warning(disable: 68)    // integer conversion resulted in a change of sign
#  pragma warning(disable: 186)   // pointless comparison of unsigned integer with zero
#  pragma warning(disable: 878)   // incompatible exception specifications
#  pragma warning(disable: 1334)  // the "template" keyword used for syntactic disambiguation may only be used within a template
#  pragma warning(disable: 1682)  // implicit conversion of a 64-bit integral type to a smaller integral type (potential portability problem)
#  pragma warning(disable: 1875)  // offsetof applied to non-POD (Plain Old Data) types is nonstandard
#  pragma warning(disable: 2196)  // warning #2196: routine is both "inline" and "noinline"
#elif defined(__GNUG__) && !defined(__clang__)
#  pragma GCC diagnostic push
#  pragma GCC diagnostic ignored "-Wunused-but-set-parameter"
#  pragma GCC diagnostic ignored "-Wunused-but-set-variable"
#  pragma GCC diagnostic ignored "-Wmissing-field-initializers"
#  pragma GCC diagnostic ignored "-Wstrict-aliasing"
#  pragma GCC diagnostic ignored "-Wattributes"
#  if __GNUC__ >= 7
#    pragma GCC diagnostic ignored "-Wnoexcept-type"
#  endif
#endif

#include "attr.h"
#include "options.h"
#include "class_support.h"

NAMESPACE_BEGIN(pybind11)

/// Wraps an arbitrary C++ function/method/lambda function/.. into a callable Python object
class cpp_function : public function {
public:
    cpp_function() { }

    /// Construct a cpp_function from a vanilla function pointer
    template <typename Return, typename... Args, typename... Extra>
    cpp_function(Return (*f)(Args...), const Extra&... extra) {
        initialize(f, f, extra...);
    }

    /// Construct a cpp_function from a lambda function (possibly with internal state)
    template <typename Func, typename... Extra, typename = detail::enable_if_t<
        detail::satisfies_none_of<
            detail::remove_reference_t<Func>,
            std::is_function, std::is_pointer, std::is_member_pointer
        >::value>
    >
    cpp_function(Func &&f, const Extra&... extra) {
        using FuncType = typename detail::remove_class<decltype(&detail::remove_reference_t<Func>::operator())>::type;
        initialize(std::forward<Func>(f),
                   (FuncType *) nullptr, extra...);
    }

    /// Construct a cpp_function from a class method (non-const)
    template <typename Return, typename Class, typename... Arg, typename... Extra>
    cpp_function(Return (Class::*f)(Arg...), const Extra&... extra) {
        initialize([f](Class *c, Arg... args) -> Return { return (c->*f)(args...); },
                   (Return (*) (Class *, Arg...)) nullptr, extra...);
    }

    /// Construct a cpp_function from a class method (const)
    template <typename Return, typename Class, typename... Arg, typename... Extra>
    cpp_function(Return (Class::*f)(Arg...) const, const Extra&... extra) {
        initialize([f](const Class *c, Arg... args) -> Return { return (c->*f)(args...); },
                   (Return (*)(const Class *, Arg ...)) nullptr, extra...);
    }

    /// Return the function name
    object name() const { return attr("__name__"); }

protected:
    /// Space optimization: don't inline this frequently instantiated fragment
    PYBIND11_NOINLINE detail::function_record *make_function_record() {
        return new detail::function_record();
    }

    /// Special internal constructor for functors, lambda functions, etc.
    template <typename Func, typename Return, typename... Args, typename... Extra>
    void initialize(Func &&f, Return (*)(Args...), const Extra&... extra) {

        struct capture { detail::remove_reference_t<Func> f; };

        /* Store the function including any extra state it might have (e.g. a lambda capture object) */
        auto rec = make_function_record();

        /* Store the capture object directly in the function record if there is enough space */
        if (sizeof(capture) <= sizeof(rec->data)) {
            /* Without these pragmas, GCC warns that there might not be
               enough space to use the placement new operator. However, the
               'if' statement above ensures that this is the case. */
#if defined(__GNUG__) && !defined(__clang__) && __GNUC__ >= 6
#  pragma GCC diagnostic push
#  pragma GCC diagnostic ignored "-Wplacement-new"
#endif
            new ((capture *) &rec->data) capture { std::forward<Func>(f) };
#if defined(__GNUG__) && !defined(__clang__) && __GNUC__ >= 6
#  pragma GCC diagnostic pop
#endif
            if (!std::is_trivially_destructible<Func>::value)
                rec->free_data = [](detail::function_record *r) { ((capture *) &r->data)->~capture(); };
        } else {
            rec->data[0] = new capture { std::forward<Func>(f) };
            rec->free_data = [](detail::function_record *r) { delete ((capture *) r->data[0]); };
        }

        /* Type casters for the function arguments and return value */
        using cast_in = detail::argument_loader<Args...>;
        using cast_out = detail::make_caster<
            detail::conditional_t<std::is_void<Return>::value, detail::void_type, Return>
        >;

        static_assert(detail::expected_num_args<Extra...>(sizeof...(Args), cast_in::has_args, cast_in::has_kwargs),
                      "The number of argument annotations does not match the number of function arguments");

        /* Dispatch code which converts function arguments and performs the actual function call */
        rec->impl = [](detail::function_call &call) -> handle {
            cast_in args_converter;

            /* Try to cast the function arguments into the C++ domain */
            if (!args_converter.load_args(call))
                return PYBIND11_TRY_NEXT_OVERLOAD;

            /* Invoke call policy pre-call hook */
            detail::process_attributes<Extra...>::precall(call);

            /* Get a pointer to the capture object */
            auto data = (sizeof(capture) <= sizeof(call.func.data)
                         ? &call.func.data : call.func.data[0]);
            capture *cap = const_cast<capture *>(reinterpret_cast<const capture *>(data));

            /* Override policy for rvalues -- usually to enforce rvp::move on an rvalue */
            const auto policy = detail::return_value_policy_override<Return>::policy(call.func.policy);

            /* Function scope guard -- defaults to the compile-to-nothing `void_type` */
            using Guard = detail::extract_guard_t<Extra...>;

            /* Perform the function call */
            handle result = cast_out::cast(
                std::move(args_converter).template call<Return, Guard>(cap->f), policy, call.parent);

            /* Invoke call policy post-call hook */
            detail::process_attributes<Extra...>::postcall(call, result);

            return result;
        };

        /* Process any user-provided function attributes */
        detail::process_attributes<Extra...>::init(extra..., rec);

        /* Generate a readable signature describing the function's arguments and return value types */
        using detail::descr; using detail::_;
        PYBIND11_DESCR signature = _("(") + cast_in::arg_names() + _(") -> ") + cast_out::name();

        /* Register the function with Python from generic (non-templated) code */
        initialize_generic(rec, signature.text(), signature.types(), sizeof...(Args));

        if (cast_in::has_args) rec->has_args = true;
        if (cast_in::has_kwargs) rec->has_kwargs = true;

        /* Stash some additional information used by an important optimization in 'functional.h' */
        using FunctionType = Return (*)(Args...);
        constexpr bool is_function_ptr =
            std::is_convertible<Func, FunctionType>::value &&
            sizeof(capture) == sizeof(void *);
        if (is_function_ptr) {
            rec->is_stateless = true;
            rec->data[1] = const_cast<void *>(reinterpret_cast<const void *>(&typeid(FunctionType)));
        }
    }

    /// Register a function call with Python (generic non-templated code goes here)
    void initialize_generic(detail::function_record *rec, const char *text,
                            const std::type_info *const *types, size_t args) {

        /* Create copies of all referenced C-style strings */
        rec->name = strdup(rec->name ? rec->name : "");
        if (rec->doc) rec->doc = strdup(rec->doc);
        for (auto &a: rec->args) {
            if (a.name)
                a.name = strdup(a.name);
            if (a.descr)
                a.descr = strdup(a.descr);
            else if (a.value)
                a.descr = strdup(a.value.attr("__repr__")().cast<std::string>().c_str());
        }

        /* Generate a proper function signature */
        std::string signature;
        size_t type_depth = 0, char_index = 0, type_index = 0, arg_index = 0;
        while (true) {
            char c = text[char_index++];
            if (c == '\0')
                break;

            if (c == '{') {
                // Write arg name for everything except *args, **kwargs and return type.
                if (type_depth == 0 && text[char_index] != '*' && arg_index < args) {
                    if (!rec->args.empty() && rec->args[arg_index].name) {
                        signature += rec->args[arg_index].name;
                    } else if (arg_index == 0 && rec->is_method) {
                        signature += "self";
                    } else {
                        signature += "arg" + std::to_string(arg_index - (rec->is_method ? 1 : 0));
                    }
                    signature += ": ";
                }
                ++type_depth;
            } else if (c == '}') {
                --type_depth;
                if (type_depth == 0) {
                    if (arg_index < rec->args.size() && rec->args[arg_index].descr) {
                        signature += "=";
                        signature += rec->args[arg_index].descr;
                    }
                    arg_index++;
                }
            } else if (c == '%') {
                const std::type_info *t = types[type_index++];
                if (!t)
                    pybind11_fail("Internal error while parsing type signature (1)");
                if (auto tinfo = detail::get_type_info(*t)) {
#if defined(PYPY_VERSION)
                    signature += handle((PyObject *) tinfo->type)
                                     .attr("__module__")
                                     .cast<std::string>() + ".";
#endif
                    signature += tinfo->type->tp_name;
                } else {
                    std::string tname(t->name());
                    detail::clean_type_id(tname);
                    signature += tname;
                }
            } else {
                signature += c;
            }
        }
        if (type_depth != 0 || types[type_index] != nullptr)
            pybind11_fail("Internal error while parsing type signature (2)");

        #if !defined(PYBIND11_CONSTEXPR_DESCR)
            delete[] types;
            delete[] text;
        #endif

#if PY_MAJOR_VERSION < 3
        if (strcmp(rec->name, "__next__") == 0) {
            std::free(rec->name);
            rec->name = strdup("next");
        } else if (strcmp(rec->name, "__bool__") == 0) {
            std::free(rec->name);
            rec->name = strdup("__nonzero__");
        }
#endif
        rec->signature = strdup(signature.c_str());
        rec->args.shrink_to_fit();
        rec->is_constructor = !strcmp(rec->name, "__init__") || !strcmp(rec->name, "__setstate__");
        rec->nargs = (std::uint16_t) args;

        if (rec->sibling && PYBIND11_INSTANCE_METHOD_CHECK(rec->sibling.ptr()))
            rec->sibling = PYBIND11_INSTANCE_METHOD_GET_FUNCTION(rec->sibling.ptr());

        detail::function_record *chain = nullptr, *chain_start = rec;
        if (rec->sibling) {
            if (PyCFunction_Check(rec->sibling.ptr())) {
                auto rec_capsule = reinterpret_borrow<capsule>(PyCFunction_GET_SELF(rec->sibling.ptr()));
                chain = (detail::function_record *) rec_capsule;
                /* Never append a method to an overload chain of a parent class;
                   instead, hide the parent's overloads in this case */
                if (!chain->scope.is(rec->scope))
                    chain = nullptr;
            }
            // Don't trigger for things like the default __init__, which are wrapper_descriptors that we are intentionally replacing
            else if (!rec->sibling.is_none() && rec->name[0] != '_')
                pybind11_fail("Cannot overload existing non-function object \"" + std::string(rec->name) +
                        "\" with a function of the same name");
        }

        if (!chain) {
            /* No existing overload was found, create a new function object */
            rec->def = new PyMethodDef();
            std::memset(rec->def, 0, sizeof(PyMethodDef));
            rec->def->ml_name = rec->name;
            rec->def->ml_meth = reinterpret_cast<PyCFunction>(*dispatcher);
            rec->def->ml_flags = METH_VARARGS | METH_KEYWORDS;

            capsule rec_capsule(rec, [](void *ptr) {
                destruct((detail::function_record *) ptr);
            });

            object scope_module;
            if (rec->scope) {
                if (hasattr(rec->scope, "__module__")) {
                    scope_module = rec->scope.attr("__module__");
                } else if (hasattr(rec->scope, "__name__")) {
                    scope_module = rec->scope.attr("__name__");
                }
            }

            m_ptr = PyCFunction_NewEx(rec->def, rec_capsule.ptr(), scope_module.ptr());
            if (!m_ptr)
                pybind11_fail("cpp_function::cpp_function(): Could not allocate function object");
        } else {
            /* Append at the end of the overload chain */
            m_ptr = rec->sibling.ptr();
            inc_ref();
            chain_start = chain;
            if (chain->is_method != rec->is_method)
                pybind11_fail("overloading a method with both static and instance methods is not supported; "
                    #if defined(NDEBUG)
                        "compile in debug mode for more details"
                    #else
                        "error while attempting to bind " + std::string(rec->is_method ? "instance" : "static") + " method " +
                        std::string(pybind11::str(rec->scope.attr("__name__"))) + "." + std::string(rec->name) + signature
                    #endif
                );
            while (chain->next)
                chain = chain->next;
            chain->next = rec;
        }

        std::string signatures;
        int index = 0;
        /* Create a nice pydoc rec including all signatures and
           docstrings of the functions in the overload chain */
        if (chain && options::show_function_signatures()) {
            // First a generic signature
            signatures += rec->name;
            signatures += "(*args, **kwargs)\n";
            signatures += "Overloaded function.\n\n";
        }
        // Then specific overload signatures
        bool first_user_def = true;
        for (auto it = chain_start; it != nullptr; it = it->next) {
            if (options::show_function_signatures()) {
                if (index > 0) signatures += "\n";
                if (chain)
                    signatures += std::to_string(++index) + ". ";
                signatures += rec->name;
                signatures += it->signature;
                signatures += "\n";
            }
            if (it->doc && strlen(it->doc) > 0 && options::show_user_defined_docstrings()) {
                // If we're appending another docstring, and aren't printing function signatures, we
                // need to append a newline first:
                if (!options::show_function_signatures()) {
                    if (first_user_def) first_user_def = false;
                    else signatures += "\n";
                }
                if (options::show_function_signatures()) signatures += "\n";
                signatures += it->doc;
                if (options::show_function_signatures()) signatures += "\n";
            }
        }

        /* Install docstring */
        PyCFunctionObject *func = (PyCFunctionObject *) m_ptr;
        if (func->m_ml->ml_doc)
            std::free(const_cast<char *>(func->m_ml->ml_doc));
        func->m_ml->ml_doc = strdup(signatures.c_str());

        if (rec->is_method) {
            m_ptr = PYBIND11_INSTANCE_METHOD_NEW(m_ptr, rec->scope.ptr());
            if (!m_ptr)
                pybind11_fail("cpp_function::cpp_function(): Could not allocate instance method object");
            Py_DECREF(func);
        }
    }

    /// When a cpp_function is GCed, release any memory allocated by pybind11
    static void destruct(detail::function_record *rec) {
        while (rec) {
            detail::function_record *next = rec->next;
            if (rec->free_data)
                rec->free_data(rec);
            std::free((char *) rec->name);
            std::free((char *) rec->doc);
            std::free((char *) rec->signature);
            for (auto &arg: rec->args) {
                std::free(const_cast<char *>(arg.name));
                std::free(const_cast<char *>(arg.descr));
                arg.value.dec_ref();
            }
            if (rec->def) {
                std::free(const_cast<char *>(rec->def->ml_doc));
                delete rec->def;
            }
            delete rec;
            rec = next;
        }
    }

    /// Main dispatch logic for calls to functions bound using pybind11
    static PyObject *dispatcher(PyObject *self, PyObject *args_in, PyObject *kwargs_in) {
        using namespace detail;

        /* Iterator over the list of potentially admissible overloads */
        function_record *overloads = (function_record *) PyCapsule_GetPointer(self, nullptr),
                        *it = overloads;

        /* Need to know how many arguments + keyword arguments there are to pick the right overload */
        const size_t n_args_in = (size_t) PyTuple_GET_SIZE(args_in);

        handle parent = n_args_in > 0 ? PyTuple_GET_ITEM(args_in, 0) : nullptr,
               result = PYBIND11_TRY_NEXT_OVERLOAD;

        try {
            // We do this in two passes: in the first pass, we load arguments with `convert=false`;
            // in the second, we allow conversion (except for arguments with an explicit
            // py::arg().noconvert()).  This lets us prefer calls without conversion, with
            // conversion as a fallback.
            std::vector<function_call> second_pass;

            // However, if there are no overloads, we can just skip the no-convert pass entirely
            const bool overloaded = it != nullptr && it->next != nullptr;

            for (; it != nullptr; it = it->next) {

                /* For each overload:
                   1. Copy all positional arguments we were given, also checking to make sure that
                      named positional arguments weren't *also* specified via kwarg.
                   2. If we weren't given enough, try to make up the omitted ones by checking
                      whether they were provided by a kwarg matching the `py::arg("name")` name.  If
                      so, use it (and remove it from kwargs; if not, see if the function binding
                      provided a default that we can use.
                   3. Ensure that either all keyword arguments were "consumed", or that the function
                      takes a kwargs argument to accept unconsumed kwargs.
                   4. Any positional arguments still left get put into a tuple (for args), and any
                      leftover kwargs get put into a dict.
                   5. Pack everything into a vector; if we have py::args or py::kwargs, they are an
                      extra tuple or dict at the end of the positional arguments.
                   6. Call the function call dispatcher (function_record::impl)

                   If one of these fail, move on to the next overload and keep trying until we get a
                   result other than PYBIND11_TRY_NEXT_OVERLOAD.
                 */

                function_record &func = *it;
                size_t pos_args = func.nargs;    // Number of positional arguments that we need
                if (func.has_args) --pos_args;   // (but don't count py::args
                if (func.has_kwargs) --pos_args; //  or py::kwargs)

                if (!func.has_args && n_args_in > pos_args)
                    continue; // Too many arguments for this overload

                if (n_args_in < pos_args && func.args.size() < pos_args)
                    continue; // Not enough arguments given, and not enough defaults to fill in the blanks

                function_call call(func, parent);

                size_t args_to_copy = std::min(pos_args, n_args_in);
                size_t args_copied = 0;

                // 1. Copy any position arguments given.
                bool bad_arg = false;
                for (; args_copied < args_to_copy; ++args_copied) {
                    argument_record *arg_rec = args_copied < func.args.size() ? &func.args[args_copied] : nullptr;
                    if (kwargs_in && arg_rec && arg_rec->name && PyDict_GetItemString(kwargs_in, arg_rec->name)) {
                        bad_arg = true;
                        break;
                    }

                    handle arg(PyTuple_GET_ITEM(args_in, args_copied));
                    if (arg_rec && !arg_rec->none && arg.is_none()) {
                        bad_arg = true;
                        break;
                    }
                    call.args.push_back(arg);
                    call.args_convert.push_back(arg_rec ? arg_rec->convert : true);
                }
                if (bad_arg)
                    continue; // Maybe it was meant for another overload (issue #688)

                // We'll need to copy this if we steal some kwargs for defaults
                dict kwargs = reinterpret_borrow<dict>(kwargs_in);

                // 2. Check kwargs and, failing that, defaults that may help complete the list
                if (args_copied < pos_args) {
                    bool copied_kwargs = false;

                    for (; args_copied < pos_args; ++args_copied) {
                        const auto &arg = func.args[args_copied];

                        handle value;
                        if (kwargs_in && arg.name)
                            value = PyDict_GetItemString(kwargs.ptr(), arg.name);

                        if (value) {
                            // Consume a kwargs value
                            if (!copied_kwargs) {
                                kwargs = reinterpret_steal<dict>(PyDict_Copy(kwargs.ptr()));
                                copied_kwargs = true;
                            }
                            PyDict_DelItemString(kwargs.ptr(), arg.name);
                        } else if (arg.value) {
                            value = arg.value;
                        }

                        if (value) {
                            call.args.push_back(value);
                            call.args_convert.push_back(arg.convert);
                        }
                        else
                            break;
                    }

                    if (args_copied < pos_args)
                        continue; // Not enough arguments, defaults, or kwargs to fill the positional arguments
                }

                // 3. Check everything was consumed (unless we have a kwargs arg)
                if (kwargs && kwargs.size() > 0 && !func.has_kwargs)
                    continue; // Unconsumed kwargs, but no py::kwargs argument to accept them

                // 4a. If we have a py::args argument, create a new tuple with leftovers
                tuple extra_args;
                if (func.has_args) {
                    if (args_to_copy == 0) {
                        // We didn't copy out any position arguments from the args_in tuple, so we
                        // can reuse it directly without copying:
                        extra_args = reinterpret_borrow<tuple>(args_in);
                    } else if (args_copied >= n_args_in) {
                        extra_args = tuple(0);
                    } else {
                        size_t args_size = n_args_in - args_copied;
                        extra_args = tuple(args_size);
                        for (size_t i = 0; i < args_size; ++i) {
                            handle item = PyTuple_GET_ITEM(args_in, args_copied + i);
                            extra_args[i] = item.inc_ref().ptr();
                        }
                    }
                    call.args.push_back(extra_args);
                    call.args_convert.push_back(false);
                }

                // 4b. If we have a py::kwargs, pass on any remaining kwargs
                if (func.has_kwargs) {
                    if (!kwargs.ptr())
                        kwargs = dict(); // If we didn't get one, send an empty one
                    call.args.push_back(kwargs);
                    call.args_convert.push_back(false);
                }

                // 5. Put everything in a vector.  Not technically step 5, we've been building it
                // in `call.args` all along.
                #if !defined(NDEBUG)
                if (call.args.size() != func.nargs || call.args_convert.size() != func.nargs)
                    pybind11_fail("Internal error: function call dispatcher inserted wrong number of arguments!");
                #endif

                std::vector<bool> second_pass_convert;
                if (overloaded) {
                    // We're in the first no-convert pass, so swap out the conversion flags for a
                    // set of all-false flags.  If the call fails, we'll swap the flags back in for
                    // the conversion-allowed call below.
                    second_pass_convert.resize(func.nargs, false);
                    call.args_convert.swap(second_pass_convert);
                }

                // 6. Call the function.
                try {
                    loader_life_support guard{};
                    result = func.impl(call);
                } catch (reference_cast_error &) {
                    result = PYBIND11_TRY_NEXT_OVERLOAD;
                }

                if (result.ptr() != PYBIND11_TRY_NEXT_OVERLOAD)
                    break;

                if (overloaded) {
                    // The (overloaded) call failed; if the call has at least one argument that
                    // permits conversion (i.e. it hasn't been explicitly specified `.noconvert()`)
                    // then add this call to the list of second pass overloads to try.
                    for (size_t i = func.is_method ? 1 : 0; i < pos_args; i++) {
                        if (second_pass_convert[i]) {
                            // Found one: swap the converting flags back in and store the call for
                            // the second pass.
                            call.args_convert.swap(second_pass_convert);
                            second_pass.push_back(std::move(call));
                            break;
                        }
                    }
                }
            }

            if (overloaded && !second_pass.empty() && result.ptr() == PYBIND11_TRY_NEXT_OVERLOAD) {
                // The no-conversion pass finished without success, try again with conversion allowed
                for (auto &call : second_pass) {
                    try {
                        loader_life_support guard{};
                        result = call.func.impl(call);
                    } catch (reference_cast_error &) {
                        result = PYBIND11_TRY_NEXT_OVERLOAD;
                    }

                    if (result.ptr() != PYBIND11_TRY_NEXT_OVERLOAD)
                        break;
                }
            }
        } catch (error_already_set &e) {
            e.restore();
            return nullptr;
        } catch (...) {
            /* When an exception is caught, give each registered exception
               translator a chance to translate it to a Python exception
               in reverse order of registration.

               A translator may choose to do one of the following:

                - catch the exception and call PyErr_SetString or PyErr_SetObject
                  to set a standard (or custom) Python exception, or
                - do nothing and let the exception fall through to the next translator, or
                - delegate translation to the next translator by throwing a new type of exception. */

            auto last_exception = std::current_exception();
            auto &registered_exception_translators = get_internals().registered_exception_translators;
            for (auto& translator : registered_exception_translators) {
                try {
                    translator(last_exception);
                } catch (...) {
                    last_exception = std::current_exception();
                    continue;
                }
                return nullptr;
            }
            PyErr_SetString(PyExc_SystemError, "Exception escaped from default exception translator!");
            return nullptr;
        }

        if (result.ptr() == PYBIND11_TRY_NEXT_OVERLOAD) {
            if (overloads->is_operator)
                return handle(Py_NotImplemented).inc_ref().ptr();

            std::string msg = std::string(overloads->name) + "(): incompatible " +
                std::string(overloads->is_constructor ? "constructor" : "function") +
                " arguments. The following argument types are supported:\n";

            int ctr = 0;
            for (function_record *it2 = overloads; it2 != nullptr; it2 = it2->next) {
                msg += "    "+ std::to_string(++ctr) + ". ";

                bool wrote_sig = false;
                if (overloads->is_constructor) {
                    // For a constructor, rewrite `(self: Object, arg0, ...) -> NoneType` as `Object(arg0, ...)`
                    std::string sig = it2->signature;
                    size_t start = sig.find('(') + 7; // skip "(self: "
                    if (start < sig.size()) {
                        // End at the , for the next argument
                        size_t end = sig.find(", "), next = end + 2;
                        size_t ret = sig.rfind(" -> ");
                        // Or the ), if there is no comma:
                        if (end >= sig.size()) next = end = sig.find(')');
                        if (start < end && next < sig.size()) {
                            msg.append(sig, start, end - start);
                            msg += '(';
                            msg.append(sig, next, ret - next);
                            wrote_sig = true;
                        }
                    }
                }
                if (!wrote_sig) msg += it2->signature;

                msg += "\n";
            }
            msg += "\nInvoked with: ";
            auto args_ = reinterpret_borrow<tuple>(args_in);
            bool some_args = false;
            for (size_t ti = overloads->is_constructor ? 1 : 0; ti < args_.size(); ++ti) {
                if (!some_args) some_args = true;
                else msg += ", ";
                msg += pybind11::repr(args_[ti]);
            }
            if (kwargs_in) {
                auto kwargs = reinterpret_borrow<dict>(kwargs_in);
                if (kwargs.size() > 0) {
                    if (some_args) msg += "; ";
                    msg += "kwargs: ";
                    bool first = true;
                    for (auto kwarg : kwargs) {
                        if (first) first = false;
                        else msg += ", ";
                        msg += pybind11::str("{}={!r}").format(kwarg.first, kwarg.second);
                    }
                }
            }

            PyErr_SetString(PyExc_TypeError, msg.c_str());
            return nullptr;
        } else if (!result) {
            std::string msg = "Unable to convert function return value to a "
                              "Python type! The signature was\n\t";
            msg += it->signature;
            PyErr_SetString(PyExc_TypeError, msg.c_str());
            return nullptr;
        } else {
            if (overloads->is_constructor) {
                auto tinfo = get_type_info((PyTypeObject *) overloads->scope.ptr());
                tinfo->init_instance(reinterpret_cast<instance *>(parent.ptr()), nullptr);
            }
            return result.ptr();
        }
    }
};

/// Wrapper for Python extension modules
class module : public object {
public:
    PYBIND11_OBJECT_DEFAULT(module, object, PyModule_Check)

    /// Create a new top-level Python module with the given name and docstring
    explicit module(const char *name, const char *doc = nullptr) {
        if (!options::show_user_defined_docstrings()) doc = nullptr;
#if PY_MAJOR_VERSION >= 3
        PyModuleDef *def = new PyModuleDef();
        std::memset(def, 0, sizeof(PyModuleDef));
        def->m_name = name;
        def->m_doc = doc;
        def->m_size = -1;
        Py_INCREF(def);
        m_ptr = PyModule_Create(def);
#else
        m_ptr = Py_InitModule3(name, nullptr, doc);
#endif
        if (m_ptr == nullptr)
            pybind11_fail("Internal error in module::module()");
        inc_ref();
    }

    /** \rst
        Create Python binding for a new function within the module scope. ``Func``
        can be a plain C++ function, a function pointer, or a lambda function. For
        details on the ``Extra&& ... extra`` argument, see section :ref:`extras`.
    \endrst */
    template <typename Func, typename... Extra>
    module &def(const char *name_, Func &&f, const Extra& ... extra) {
        cpp_function func(std::forward<Func>(f), name(name_), scope(*this),
                          sibling(getattr(*this, name_, none())), extra...);
        // NB: allow overwriting here because cpp_function sets up a chain with the intention of
        // overwriting (and has already checked internally that it isn't overwriting non-functions).
        add_object(name_, func, true /* overwrite */);
        return *this;
    }

    /** \rst
        Create and return a new Python submodule with the given name and docstring.
        This also works recursively, i.e.

        .. code-block:: cpp

            py::module m("example", "pybind11 example plugin");
            py::module m2 = m.def_submodule("sub", "A submodule of 'example'");
            py::module m3 = m2.def_submodule("subsub", "A submodule of 'example.sub'");
    \endrst */
    module def_submodule(const char *name, const char *doc = nullptr) {
        std::string full_name = std::string(PyModule_GetName(m_ptr))
            + std::string(".") + std::string(name);
        auto result = reinterpret_borrow<module>(PyImport_AddModule(full_name.c_str()));
        if (doc && options::show_user_defined_docstrings())
            result.attr("__doc__") = pybind11::str(doc);
        attr(name) = result;
        return result;
    }

    /// Import and return a module or throws `error_already_set`.
    static module import(const char *name) {
        PyObject *obj = PyImport_ImportModule(name);
        if (!obj)
            throw error_already_set();
        return reinterpret_steal<module>(obj);
    }

    // Adds an object to the module using the given name.  Throws if an object with the given name
    // already exists.
    //
    // overwrite should almost always be false: attempting to overwrite objects that pybind11 has
    // established will, in most cases, break things.
    PYBIND11_NOINLINE void add_object(const char *name, handle obj, bool overwrite = false) {
        if (!overwrite && hasattr(*this, name))
            pybind11_fail("Error during initialization: multiple incompatible definitions with name \"" +
                    std::string(name) + "\"");

        PyModule_AddObject(ptr(), name, obj.inc_ref().ptr() /* steals a reference */);
    }
};

/// \ingroup python_builtins
/// Return a dictionary representing the global variables in the current execution frame,
/// or ``__main__.__dict__`` if there is no frame (usually when the interpreter is embedded).
inline dict globals() {
    PyObject *p = PyEval_GetGlobals();
    return reinterpret_borrow<dict>(p ? p : module::import("__main__").attr("__dict__").ptr());
}

NAMESPACE_BEGIN(detail)
/// Generic support for creating new Python heap types
class generic_type : public object {
    template <typename...> friend class class_;
public:
    PYBIND11_OBJECT_DEFAULT(generic_type, object, PyType_Check)
protected:
    void initialize(const type_record &rec) {
        if (rec.scope && hasattr(rec.scope, rec.name))
            pybind11_fail("generic_type: cannot initialize type \"" + std::string(rec.name) +
                          "\": an object with that name is already defined");

        if (get_type_info(*rec.type))
            pybind11_fail("generic_type: type \"" + std::string(rec.name) +
                          "\" is already registered!");

        m_ptr = make_new_python_type(rec);

        /* Register supplemental type information in C++ dict */
        auto *tinfo = new detail::type_info();
        tinfo->type = (PyTypeObject *) m_ptr;
        tinfo->cpptype = rec.type;
        tinfo->type_size = rec.type_size;
        tinfo->operator_new = rec.operator_new;
        tinfo->holder_size_in_ptrs = size_in_ptrs(rec.holder_size);
        tinfo->init_instance = rec.init_instance;
        tinfo->dealloc = rec.dealloc;
        tinfo->simple_type = true;
        tinfo->simple_ancestors = true;

        auto &internals = get_internals();
        auto tindex = std::type_index(*rec.type);
        tinfo->direct_conversions = &internals.direct_conversions[tindex];
        tinfo->default_holder = rec.default_holder;
        internals.registered_types_cpp[tindex] = tinfo;
        internals.registered_types_py[(PyTypeObject *) m_ptr] = { tinfo };

        if (rec.bases.size() > 1 || rec.multiple_inheritance) {
            mark_parents_nonsimple(tinfo->type);
            tinfo->simple_ancestors = false;
        }
        else if (rec.bases.size() == 1) {
            auto parent_tinfo = get_type_info((PyTypeObject *) rec.bases[0].ptr());
            tinfo->simple_ancestors = parent_tinfo->simple_ancestors;
        }
    }

    /// Helper function which tags all parents of a type using mult. inheritance
    void mark_parents_nonsimple(PyTypeObject *value) {
        auto t = reinterpret_borrow<tuple>(value->tp_bases);
        for (handle h : t) {
            auto tinfo2 = get_type_info((PyTypeObject *) h.ptr());
            if (tinfo2)
                tinfo2->simple_type = false;
            mark_parents_nonsimple((PyTypeObject *) h.ptr());
        }
    }

    void install_buffer_funcs(
            buffer_info *(*get_buffer)(PyObject *, void *),
            void *get_buffer_data) {
        PyHeapTypeObject *type = (PyHeapTypeObject*) m_ptr;
        auto tinfo = detail::get_type_info(&type->ht_type);

        if (!type->ht_type.tp_as_buffer)
            pybind11_fail(
                "To be able to register buffer protocol support for the type '" +
                std::string(tinfo->type->tp_name) +
                "' the associated class<>(..) invocation must "
                "include the pybind11::buffer_protocol() annotation!");

        tinfo->get_buffer = get_buffer;
        tinfo->get_buffer_data = get_buffer_data;
    }

    void def_property_static_impl(const char *name,
                                  handle fget, handle fset,
                                  detail::function_record *rec_fget) {
        const auto is_static = !(rec_fget->is_method && rec_fget->scope);
        const auto has_doc = rec_fget->doc && pybind11::options::show_user_defined_docstrings();

        auto property = handle((PyObject *) (is_static ? get_internals().static_property_type
                                                       : &PyProperty_Type));
        attr(name) = property(fget.ptr() ? fget : none(),
                              fset.ptr() ? fset : none(),
                              /*deleter*/none(),
                              pybind11::str(has_doc ? rec_fget->doc : ""));
    }
};

/// Set the pointer to operator new if it exists. The cast is needed because it can be overloaded.
template <typename T, typename = void_t<decltype(static_cast<void *(*)(size_t)>(T::operator new))>>
void set_operator_new(type_record *r) { r->operator_new = &T::operator new; }

template <typename> void set_operator_new(...) { }

template <typename T, typename SFINAE = void> struct has_operator_delete : std::false_type { };
template <typename T> struct has_operator_delete<T, void_t<decltype(static_cast<void (*)(void *)>(T::operator delete))>>
    : std::true_type { };
template <typename T, typename SFINAE = void> struct has_operator_delete_size : std::false_type { };
template <typename T> struct has_operator_delete_size<T, void_t<decltype(static_cast<void (*)(void *, size_t)>(T::operator delete))>>
    : std::true_type { };
/// Call class-specific delete if it exists or global otherwise. Can also be an overload set.
template <typename T, enable_if_t<has_operator_delete<T>::value, int> = 0>
void call_operator_delete(T *p, size_t) { T::operator delete(p); }
template <typename T, enable_if_t<!has_operator_delete<T>::value && has_operator_delete_size<T>::value, int> = 0>
void call_operator_delete(T *p, size_t s) { T::operator delete(p, s); }

inline void call_operator_delete(void *p, size_t) { ::operator delete(p); }

NAMESPACE_END(detail)

/// Given a pointer to a member function, cast it to its `Derived` version.
/// Forward everything else unchanged.
template <typename /*Derived*/, typename F>
auto method_adaptor(F &&f) -> decltype(std::forward<F>(f)) { return std::forward<F>(f); }

template <typename Derived, typename Return, typename Class, typename... Args>
auto method_adaptor(Return (Class::*pmf)(Args...)) -> Return (Derived::*)(Args...) { return pmf; }

template <typename Derived, typename Return, typename Class, typename... Args>
auto method_adaptor(Return (Class::*pmf)(Args...) const) -> Return (Derived::*)(Args...) const { return pmf; }

template <typename type_, typename... options>
class class_ : public detail::generic_type {
    template <typename T> using is_holder = detail::is_holder_type<type_, T>;
    template <typename T> using is_subtype = detail::is_strict_base_of<type_, T>;
    template <typename T> using is_base = detail::is_strict_base_of<T, type_>;
    // struct instead of using here to help MSVC:
    template <typename T> struct is_valid_class_option :
        detail::any_of<is_holder<T>, is_subtype<T>, is_base<T>> {};

public:
    using type = type_;
    using type_alias = detail::exactly_one_t<is_subtype, void, options...>;
    constexpr static bool has_alias = !std::is_void<type_alias>::value;
    using holder_type = detail::exactly_one_t<is_holder, std::unique_ptr<type>, options...>;

    static_assert(detail::all_of<is_valid_class_option<options>...>::value,
            "Unknown/invalid class_ template parameters provided");

    PYBIND11_OBJECT(class_, generic_type, PyType_Check)

    template <typename... Extra>
    class_(handle scope, const char *name, const Extra &... extra) {
        using namespace detail;

        // MI can only be specified via class_ template options, not constructor parameters
        static_assert(
            none_of<is_pyobject<Extra>...>::value || // no base class arguments, or:
            (   constexpr_sum(is_pyobject<Extra>::value...) == 1 && // Exactly one base
                constexpr_sum(is_base<options>::value...)   == 0 && // no template option bases
                none_of<std::is_same<multiple_inheritance, Extra>...>::value), // no multiple_inheritance attr
            "Error: multiple inheritance bases must be specified via class_ template options");

        type_record record;
        record.scope = scope;
        record.name = name;
        record.type = &typeid(type);
        record.type_size = sizeof(conditional_t<has_alias, type_alias, type>);
        record.holder_size = sizeof(holder_type);
        record.init_instance = init_instance;
        record.dealloc = dealloc;
        record.default_holder = std::is_same<holder_type, std::unique_ptr<type>>::value;

        set_operator_new<type>(&record);

        /* Register base classes specified via template arguments to class_, if any */
        PYBIND11_EXPAND_SIDE_EFFECTS(add_base<options>(record));

        /* Process optional arguments, if any */
        process_attributes<Extra...>::init(extra..., &record);

        generic_type::initialize(record);

        if (has_alias) {
            auto &instances = get_internals().registered_types_cpp;
            instances[std::type_index(typeid(type_alias))] = instances[std::type_index(typeid(type))];
        }
    }

    template <typename Base, detail::enable_if_t<is_base<Base>::value, int> = 0>
    static void add_base(detail::type_record &rec) {
        rec.add_base(typeid(Base), [](void *src) -> void * {
            return static_cast<Base *>(reinterpret_cast<type *>(src));
        });
    }

    template <typename Base, detail::enable_if_t<!is_base<Base>::value, int> = 0>
    static void add_base(detail::type_record &) { }

    template <typename Func, typename... Extra>
    class_ &def(const char *name_, Func&& f, const Extra&... extra) {
        cpp_function cf(method_adaptor<type>(std::forward<Func>(f)), name(name_), is_method(*this),
                        sibling(getattr(*this, name_, none())), extra...);
        attr(cf.name()) = cf;
        return *this;
    }

    template <typename Func, typename... Extra> class_ &
    def_static(const char *name_, Func &&f, const Extra&... extra) {
        static_assert(!std::is_member_function_pointer<Func>::value,
                "def_static(...) called with a non-static member function pointer");
        cpp_function cf(std::forward<Func>(f), name(name_), scope(*this),
                        sibling(getattr(*this, name_, none())), extra...);
        attr(cf.name()) = cf;
        return *this;
    }

    template <detail::op_id id, detail::op_type ot, typename L, typename R, typename... Extra>
    class_ &def(const detail::op_<id, ot, L, R> &op, const Extra&... extra) {
        op.execute(*this, extra...);
        return *this;
    }

    template <detail::op_id id, detail::op_type ot, typename L, typename R, typename... Extra>
    class_ & def_cast(const detail::op_<id, ot, L, R> &op, const Extra&... extra) {
        op.execute_cast(*this, extra...);
        return *this;
    }

    template <typename... Args, typename... Extra>
    class_ &def(const detail::init<Args...> &init, const Extra&... extra) {
        init.execute(*this, extra...);
        return *this;
    }

    template <typename... Args, typename... Extra>
    class_ &def(const detail::init_alias<Args...> &init, const Extra&... extra) {
        init.execute(*this, extra...);
        return *this;
    }

    template <typename Func> class_& def_buffer(Func &&func) {
        struct capture { Func func; };
        capture *ptr = new capture { std::forward<Func>(func) };
        install_buffer_funcs([](PyObject *obj, void *ptr) -> buffer_info* {
            detail::make_caster<type> caster;
            if (!caster.load(obj, false))
                return nullptr;
            return new buffer_info(((capture *) ptr)->func(caster));
        }, ptr);
        return *this;
    }

    template <typename Return, typename Class, typename... Args>
    class_ &def_buffer(Return (Class::*func)(Args...)) {
        return def_buffer([func] (type &obj) { return (obj.*func)(); });
    }

    template <typename Return, typename Class, typename... Args>
    class_ &def_buffer(Return (Class::*func)(Args...) const) {
        return def_buffer([func] (const type &obj) { return (obj.*func)(); });
    }

    template <typename C, typename D, typename... Extra>
    class_ &def_readwrite(const char *name, D C::*pm, const Extra&... extra) {
        static_assert(std::is_base_of<C, type>::value, "def_readwrite() requires a class member (or base class member)");
        cpp_function fget([pm](const type &c) -> const D &{ return c.*pm; }, is_method(*this)),
                     fset([pm](type &c, const D &value) { c.*pm = value; }, is_method(*this));
        def_property(name, fget, fset, return_value_policy::reference_internal, extra...);
        return *this;
    }

    template <typename C, typename D, typename... Extra>
    class_ &def_readonly(const char *name, const D C::*pm, const Extra& ...extra) {
        static_assert(std::is_base_of<C, type>::value, "def_readonly() requires a class member (or base class member)");
        cpp_function fget([pm](const type &c) -> const D &{ return c.*pm; }, is_method(*this));
        def_property_readonly(name, fget, return_value_policy::reference_internal, extra...);
        return *this;
    }

    template <typename D, typename... Extra>
    class_ &def_readwrite_static(const char *name, D *pm, const Extra& ...extra) {
        cpp_function fget([pm](object) -> const D &{ return *pm; }, scope(*this)),
                     fset([pm](object, const D &value) { *pm = value; }, scope(*this));
        def_property_static(name, fget, fset, return_value_policy::reference, extra...);
        return *this;
    }

    template <typename D, typename... Extra>
    class_ &def_readonly_static(const char *name, const D *pm, const Extra& ...extra) {
        cpp_function fget([pm](object) -> const D &{ return *pm; }, scope(*this));
        def_property_readonly_static(name, fget, return_value_policy::reference, extra...);
        return *this;
    }

    /// Uses return_value_policy::reference_internal by default
    template <typename Getter, typename... Extra>
    class_ &def_property_readonly(const char *name, const Getter &fget, const Extra& ...extra) {
        return def_property_readonly(name, cpp_function(method_adaptor<type>(fget)),
                                     return_value_policy::reference_internal, extra...);
    }

    /// Uses cpp_function's return_value_policy by default
    template <typename... Extra>
    class_ &def_property_readonly(const char *name, const cpp_function &fget, const Extra& ...extra) {
        return def_property(name, fget, cpp_function(), extra...);
    }

    /// Uses return_value_policy::reference by default
    template <typename Getter, typename... Extra>
    class_ &def_property_readonly_static(const char *name, const Getter &fget, const Extra& ...extra) {
        return def_property_readonly_static(name, cpp_function(fget), return_value_policy::reference, extra...);
    }

    /// Uses cpp_function's return_value_policy by default
    template <typename... Extra>
    class_ &def_property_readonly_static(const char *name, const cpp_function &fget, const Extra& ...extra) {
        return def_property_static(name, fget, cpp_function(), extra...);
    }

    /// Uses return_value_policy::reference_internal by default
    template <typename Getter, typename Setter, typename... Extra>
    class_ &def_property(const char *name, const Getter &fget, const Setter &fset, const Extra& ...extra) {
        return def_property(name, fget, cpp_function(method_adaptor<type>(fset)), extra...);
    }
    template <typename Getter, typename... Extra>
    class_ &def_property(const char *name, const Getter &fget, const cpp_function &fset, const Extra& ...extra) {
        return def_property(name, cpp_function(method_adaptor<type>(fget)), fset,
                            return_value_policy::reference_internal, extra...);
    }

    /// Uses cpp_function's return_value_policy by default
    template <typename... Extra>
    class_ &def_property(const char *name, const cpp_function &fget, const cpp_function &fset, const Extra& ...extra) {
        return def_property_static(name, fget, fset, is_method(*this), extra...);
    }

    /// Uses return_value_policy::reference by default
    template <typename Getter, typename... Extra>
    class_ &def_property_static(const char *name, const Getter &fget, const cpp_function &fset, const Extra& ...extra) {
        return def_property_static(name, cpp_function(fget), fset, return_value_policy::reference, extra...);
    }

    /// Uses cpp_function's return_value_policy by default
    template <typename... Extra>
    class_ &def_property_static(const char *name, const cpp_function &fget, const cpp_function &fset, const Extra& ...extra) {
        auto rec_fget = get_function_record(fget), rec_fset = get_function_record(fset);
        char *doc_prev = rec_fget->doc; /* 'extra' field may include a property-specific documentation string */
        detail::process_attributes<Extra...>::init(extra..., rec_fget);
        if (rec_fget->doc && rec_fget->doc != doc_prev) {
            free(doc_prev);
            rec_fget->doc = strdup(rec_fget->doc);
        }
        if (rec_fset) {
            doc_prev = rec_fset->doc;
            detail::process_attributes<Extra...>::init(extra..., rec_fset);
            if (rec_fset->doc && rec_fset->doc != doc_prev) {
                free(doc_prev);
                rec_fset->doc = strdup(rec_fset->doc);
            }
        }
        def_property_static_impl(name, fget, fset, rec_fget);
        return *this;
    }

private:
    /// Initialize holder object, variant 1: object derives from enable_shared_from_this
    template <typename T>
    static void init_holder(detail::instance *inst, detail::value_and_holder &v_h,
            const holder_type * /* unused */, const std::enable_shared_from_this<T> * /* dummy */) {
        try {
            auto sh = std::dynamic_pointer_cast<typename holder_type::element_type>(
                    v_h.value_ptr<type>()->shared_from_this());
            if (sh) {
                new (&v_h.holder<holder_type>()) holder_type(std::move(sh));
                v_h.set_holder_constructed();
            }
        } catch (const std::bad_weak_ptr &) {}

        if (!v_h.holder_constructed() && inst->owned) {
            new (&v_h.holder<holder_type>()) holder_type(v_h.value_ptr<type>());
            v_h.set_holder_constructed();
        }
    }

    static void init_holder_from_existing(const detail::value_and_holder &v_h,
            const holder_type *holder_ptr, std::true_type /*is_copy_constructible*/) {
        new (&v_h.holder<holder_type>()) holder_type(*reinterpret_cast<const holder_type *>(holder_ptr));
    }

    static void init_holder_from_existing(const detail::value_and_holder &v_h,
            const holder_type *holder_ptr, std::false_type /*is_copy_constructible*/) {
        new (&v_h.holder<holder_type>()) holder_type(std::move(*const_cast<holder_type *>(holder_ptr)));
    }

    /// Initialize holder object, variant 2: try to construct from existing holder object, if possible
    static void init_holder(detail::instance *inst, detail::value_and_holder &v_h,
            const holder_type *holder_ptr, const void * /* dummy -- not enable_shared_from_this<T>) */) {
        if (holder_ptr) {
            init_holder_from_existing(v_h, holder_ptr, std::is_copy_constructible<holder_type>());
            v_h.set_holder_constructed();
        } else if (inst->owned || detail::always_construct_holder<holder_type>::value) {
            new (&v_h.holder<holder_type>()) holder_type(v_h.value_ptr<type>());
            v_h.set_holder_constructed();
        }
    }

    /// Performs instance initialization including constructing a holder and registering the known
    /// instance.  Should be called as soon as the `type` value_ptr is set for an instance.  Takes an
    /// optional pointer to an existing holder to use; if not specified and the instance is
    /// `.owned`, a new holder will be constructed to manage the value pointer.
    static void init_instance(detail::instance *inst, const void *holder_ptr) {
        auto v_h = inst->get_value_and_holder(detail::get_type_info(typeid(type)));
        if (!v_h.instance_registered()) {
            register_instance(inst, v_h.value_ptr(), v_h.type);
            v_h.set_instance_registered();
        }
        init_holder(inst, v_h, (const holder_type *) holder_ptr, v_h.value_ptr<type>());
    }

    /// Deallocates an instance; via holder, if constructed; otherwise via operator delete.
    static void dealloc(const detail::value_and_holder &v_h) {
        if (v_h.holder_constructed())
            v_h.holder<holder_type>().~holder_type();
        else
            detail::call_operator_delete(v_h.value_ptr<type>(), v_h.type->type_size);
    }

    static detail::function_record *get_function_record(handle h) {
        h = detail::get_function(h);
        return h ? (detail::function_record *) reinterpret_borrow<capsule>(PyCFunction_GET_SELF(h.ptr()))
                 : nullptr;
    }
};

/// Binds C++ enumerations and enumeration classes to Python
template <typename Type> class enum_ : public class_<Type> {
public:
    using class_<Type>::def;
    using class_<Type>::def_property_readonly_static;
    using Scalar = typename std::underlying_type<Type>::type;

    template <typename... Extra>
    enum_(const handle &scope, const char *name, const Extra&... extra)
      : class_<Type>(scope, name, extra...), m_entries(), m_parent(scope) {

        constexpr bool is_arithmetic = detail::any_of<std::is_same<arithmetic, Extra>...>::value;

        auto m_entries_ptr = m_entries.inc_ref().ptr();
        def("__repr__", [name, m_entries_ptr](Type value) -> pybind11::str {
            for (const auto &kv : reinterpret_borrow<dict>(m_entries_ptr)) {
                if (pybind11::cast<Type>(kv.second) == value)
                    return pybind11::str("{}.{}").format(name, kv.first);
            }
            return pybind11::str("{}.???").format(name);
        });
        def_property_readonly_static("__members__", [m_entries_ptr](object /* self */) {
            dict m;
            for (const auto &kv : reinterpret_borrow<dict>(m_entries_ptr))
                m[kv.first] = kv.second;
            return m;
        }, return_value_policy::copy);
        def("__init__", [](Type& value, Scalar i) { value = (Type)i; });
        def("__int__", [](Type value) { return (Scalar) value; });
        #if PY_MAJOR_VERSION < 3
            def("__long__", [](Type value) { return (Scalar) value; });
        #endif
        def("__eq__", [](const Type &value, Type *value2) { return value2 && value == *value2; });
        def("__ne__", [](const Type &value, Type *value2) { return !value2 || value != *value2; });
        if (is_arithmetic) {
            def("__lt__", [](const Type &value, Type *value2) { return value2 && value < *value2; });
            def("__gt__", [](const Type &value, Type *value2) { return value2 && value > *value2; });
            def("__le__", [](const Type &value, Type *value2) { return value2 && value <= *value2; });
            def("__ge__", [](const Type &value, Type *value2) { return value2 && value >= *value2; });
        }
        if (std::is_convertible<Type, Scalar>::value) {
            // Don't provide comparison with the underlying type if the enum isn't convertible,
            // i.e. if Type is a scoped enum, mirroring the C++ behaviour.  (NB: we explicitly
            // convert Type to Scalar below anyway because this needs to compile).
            def("__eq__", [](const Type &value, Scalar value2) { return (Scalar) value == value2; });
            def("__ne__", [](const Type &value, Scalar value2) { return (Scalar) value != value2; });
            if (is_arithmetic) {
                def("__lt__", [](const Type &value, Scalar value2) { return (Scalar) value < value2; });
                def("__gt__", [](const Type &value, Scalar value2) { return (Scalar) value > value2; });
                def("__le__", [](const Type &value, Scalar value2) { return (Scalar) value <= value2; });
                def("__ge__", [](const Type &value, Scalar value2) { return (Scalar) value >= value2; });
                def("__invert__", [](const Type &value) { return ~((Scalar) value); });
                def("__and__", [](const Type &value, Scalar value2) { return (Scalar) value & value2; });
                def("__or__", [](const Type &value, Scalar value2) { return (Scalar) value | value2; });
                def("__xor__", [](const Type &value, Scalar value2) { return (Scalar) value ^ value2; });
                def("__rand__", [](const Type &value, Scalar value2) { return (Scalar) value & value2; });
                def("__ror__", [](const Type &value, Scalar value2) { return (Scalar) value | value2; });
                def("__rxor__", [](const Type &value, Scalar value2) { return (Scalar) value ^ value2; });
                def("__and__", [](const Type &value, const Type &value2) { return (Scalar) value & (Scalar) value2; });
                def("__or__", [](const Type &value, const Type &value2) { return (Scalar) value | (Scalar) value2; });
                def("__xor__", [](const Type &value, const Type &value2) { return (Scalar) value ^ (Scalar) value2; });
            }
        }
        def("__hash__", [](const Type &value) { return (Scalar) value; });
        // Pickling and unpickling -- needed for use with the 'multiprocessing' module
        def("__getstate__", [](const Type &value) { return pybind11::make_tuple((Scalar) value); });
        def("__setstate__", [](Type &p, tuple t) { new (&p) Type((Type) t[0].cast<Scalar>()); });
    }

    /// Export enumeration entries into the parent scope
    enum_& export_values() {
        for (const auto &kv : m_entries)
            m_parent.attr(kv.first) = kv.second;
        return *this;
    }

    /// Add an enumeration entry
    enum_& value(char const* name, Type value) {
        auto v = pybind11::cast(value, return_value_policy::copy);
        this->attr(name) = v;
        m_entries[pybind11::str(name)] = v;
        return *this;
    }

private:
    dict m_entries;
    handle m_parent;
};

NAMESPACE_BEGIN(detail)
template <typename... Args> struct init {
    template <typename Class, typename... Extra, enable_if_t<!Class::has_alias, int> = 0>
    static void execute(Class &cl, const Extra&... extra) {
        using Base = typename Class::type;
        /// Function which calls a specific C++ in-place constructor
        cl.def("__init__", [](Base *self_, Args... args) { new (self_) Base(args...); }, extra...);
    }

    template <typename Class, typename... Extra,
              enable_if_t<Class::has_alias &&
                          std::is_constructible<typename Class::type, Args...>::value, int> = 0>
    static void execute(Class &cl, const Extra&... extra) {
        using Base = typename Class::type;
        using Alias = typename Class::type_alias;
        handle cl_type = cl;
        cl.def("__init__", [cl_type](handle self_, Args... args) {
                if (self_.get_type().is(cl_type))
                    new (self_.cast<Base *>()) Base(args...);
                else
                    new (self_.cast<Alias *>()) Alias(args...);
            }, extra...);
    }

    template <typename Class, typename... Extra,
              enable_if_t<Class::has_alias &&
                          !std::is_constructible<typename Class::type, Args...>::value, int> = 0>
    static void execute(Class &cl, const Extra&... extra) {
        init_alias<Args...>::execute(cl, extra...);
    }
};
template <typename... Args> struct init_alias {
    template <typename Class, typename... Extra,
              enable_if_t<Class::has_alias && std::is_constructible<typename Class::type_alias, Args...>::value, int> = 0>
    static void execute(Class &cl, const Extra&... extra) {
        using Alias = typename Class::type_alias;
        cl.def("__init__", [](Alias *self_, Args... args) { new (self_) Alias(args...); }, extra...);
    }
};


inline void keep_alive_impl(handle nurse, handle patient) {
    if (!nurse || !patient)
        pybind11_fail("Could not activate keep_alive!");

    if (patient.is_none() || nurse.is_none())
        return; /* Nothing to keep alive or nothing to be kept alive by */

    auto tinfo = all_type_info(Py_TYPE(nurse.ptr()));
    if (!tinfo.empty()) {
        /* It's a pybind-registered type, so we can store the patient in the
         * internal list. */
        add_patient(nurse.ptr(), patient.ptr());
    }
    else {
        /* Fall back to clever approach based on weak references taken from
         * Boost.Python. This is not used for pybind-registered types because
         * the objects can be destroyed out-of-order in a GC pass. */
        cpp_function disable_lifesupport(
            [patient](handle weakref) { patient.dec_ref(); weakref.dec_ref(); });

        weakref wr(nurse, disable_lifesupport);

        patient.inc_ref(); /* reference patient and leak the weak reference */
        (void) wr.release();
    }
}

PYBIND11_NOINLINE inline void keep_alive_impl(size_t Nurse, size_t Patient, function_call &call, handle ret) {
    keep_alive_impl(
        Nurse   == 0 ? ret : Nurse   <= call.args.size() ? call.args[Nurse   - 1] : handle(),
        Patient == 0 ? ret : Patient <= call.args.size() ? call.args[Patient - 1] : handle()
    );
}

inline std::pair<decltype(internals::registered_types_py)::iterator, bool> all_type_info_get_cache(PyTypeObject *type) {
    auto res = get_internals().registered_types_py
#ifdef __cpp_lib_unordered_map_try_emplace
        .try_emplace(type);
#else
        .emplace(type, std::vector<detail::type_info *>());
#endif
    if (res.second) {
        // New cache entry created; set up a weak reference to automatically remove it if the type
        // gets destroyed:
        weakref((PyObject *) type, cpp_function([type](handle wr) {
            get_internals().registered_types_py.erase(type);
            wr.dec_ref();
        })).release();
    }

    return res;
}

template <typename Iterator, typename Sentinel, bool KeyIterator, return_value_policy Policy>
struct iterator_state {
    Iterator it;
    Sentinel end;
    bool first_or_done;
};

NAMESPACE_END(detail)

template <typename... Args> detail::init<Args...> init() { return detail::init<Args...>(); }
template <typename... Args> detail::init_alias<Args...> init_alias() { return detail::init_alias<Args...>(); }

/// Makes a python iterator from a first and past-the-end C++ InputIterator.
template <return_value_policy Policy = return_value_policy::reference_internal,
          typename Iterator,
          typename Sentinel,
          typename ValueType = decltype(*std::declval<Iterator>()),
          typename... Extra>
iterator make_iterator(Iterator first, Sentinel last, Extra &&... extra) {
    typedef detail::iterator_state<Iterator, Sentinel, false, Policy> state;

    if (!detail::get_type_info(typeid(state), false)) {
        class_<state>(handle(), "iterator")
            .def("__iter__", [](state &s) -> state& { return s; })
            .def("__next__", [](state &s) -> ValueType {
                if (!s.first_or_done)
                    ++s.it;
                else
                    s.first_or_done = false;
                if (s.it == s.end) {
                    s.first_or_done = true;
                    throw stop_iteration();
                }
                return *s.it;
            }, std::forward<Extra>(extra)..., Policy);
    }

    return cast(state{first, last, true});
}

/// Makes an python iterator over the keys (`.first`) of a iterator over pairs from a
/// first and past-the-end InputIterator.
template <return_value_policy Policy = return_value_policy::reference_internal,
          typename Iterator,
          typename Sentinel,
          typename KeyType = decltype((*std::declval<Iterator>()).first),
          typename... Extra>
iterator make_key_iterator(Iterator first, Sentinel last, Extra &&... extra) {
    typedef detail::iterator_state<Iterator, Sentinel, true, Policy> state;

    if (!detail::get_type_info(typeid(state), false)) {
        class_<state>(handle(), "iterator")
            .def("__iter__", [](state &s) -> state& { return s; })
            .def("__next__", [](state &s) -> KeyType {
                if (!s.first_or_done)
                    ++s.it;
                else
                    s.first_or_done = false;
                if (s.it == s.end) {
                    s.first_or_done = true;
                    throw stop_iteration();
                }
                return (*s.it).first;
            }, std::forward<Extra>(extra)..., Policy);
    }

    return cast(state{first, last, true});
}

/// Makes an iterator over values of an stl container or other container supporting
/// `std::begin()`/`std::end()`
template <return_value_policy Policy = return_value_policy::reference_internal,
          typename Type, typename... Extra> iterator make_iterator(Type &value, Extra&&... extra) {
    return make_iterator<Policy>(std::begin(value), std::end(value), extra...);
}

/// Makes an iterator over the keys (`.first`) of a stl map-like container supporting
/// `std::begin()`/`std::end()`
template <return_value_policy Policy = return_value_policy::reference_internal,
          typename Type, typename... Extra> iterator make_key_iterator(Type &value, Extra&&... extra) {
    return make_key_iterator<Policy>(std::begin(value), std::end(value), extra...);
}

template <typename InputType, typename OutputType> void implicitly_convertible() {
    auto implicit_caster = [](PyObject *obj, PyTypeObject *type) -> PyObject * {
        if (!detail::make_caster<InputType>().load(obj, false))
            return nullptr;
        tuple args(1);
        args[0] = obj;
        PyObject *result = PyObject_Call((PyObject *) type, args.ptr(), nullptr);
        if (result == nullptr)
            PyErr_Clear();
        return result;
    };

    if (auto tinfo = detail::get_type_info(typeid(OutputType)))
        tinfo->implicit_conversions.push_back(implicit_caster);
    else
        pybind11_fail("implicitly_convertible: Unable to find type " + type_id<OutputType>());
}

template <typename ExceptionTranslator>
void register_exception_translator(ExceptionTranslator&& translator) {
    detail::get_internals().registered_exception_translators.push_front(
        std::forward<ExceptionTranslator>(translator));
}

/**
 * Wrapper to generate a new Python exception type.
 *
 * This should only be used with PyErr_SetString for now.
 * It is not (yet) possible to use as a py::base.
 * Template type argument is reserved for future use.
 */
template <typename type>
class exception : public object {
public:
    exception(handle scope, const char *name, PyObject *base = PyExc_Exception) {
        std::string full_name = scope.attr("__name__").cast<std::string>() +
                                std::string(".") + name;
        m_ptr = PyErr_NewException(const_cast<char *>(full_name.c_str()), base, NULL);
        if (hasattr(scope, name))
            pybind11_fail("Error during initialization: multiple incompatible "
                          "definitions with name \"" + std::string(name) + "\"");
        scope.attr(name) = *this;
    }

    // Sets the current python exception to this exception object with the given message
    void operator()(const char *message) {
        PyErr_SetString(m_ptr, message);
    }
};

/**
 * Registers a Python exception in `m` of the given `name` and installs an exception translator to
 * translate the C++ exception to the created Python exception using the exceptions what() method.
 * This is intended for simple exception translations; for more complex translation, register the
 * exception object and translator directly.
 */
template <typename CppException>
exception<CppException> &register_exception(handle scope,
                                            const char *name,
                                            PyObject *base = PyExc_Exception) {
    static exception<CppException> ex(scope, name, base);
    register_exception_translator([](std::exception_ptr p) {
        if (!p) return;
        try {
            std::rethrow_exception(p);
        } catch (const CppException &e) {
            ex(e.what());
        }
    });
    return ex;
}

NAMESPACE_BEGIN(detail)
PYBIND11_NOINLINE inline void print(tuple args, dict kwargs) {
    auto strings = tuple(args.size());
    for (size_t i = 0; i < args.size(); ++i) {
        strings[i] = str(args[i]);
    }
    auto sep = kwargs.contains("sep") ? kwargs["sep"] : cast(" ");
    auto line = sep.attr("join")(strings);

    object file;
    if (kwargs.contains("file")) {
        file = kwargs["file"].cast<object>();
    } else {
        try {
            file = module::import("sys").attr("stdout");
        } catch (const error_already_set &) {
            /* If print() is called from code that is executed as
               part of garbage collection during interpreter shutdown,
               importing 'sys' can fail. Give up rather than crashing the
               interpreter in this case. */
            return;
        }
    }

    auto write = file.attr("write");
    write(line);
    write(kwargs.contains("end") ? kwargs["end"] : cast("\n"));

    if (kwargs.contains("flush") && kwargs["flush"].cast<bool>())
        file.attr("flush")();
}
NAMESPACE_END(detail)

template <return_value_policy policy = return_value_policy::automatic_reference, typename... Args>
void print(Args &&...args) {
    auto c = detail::collect_arguments<policy>(std::forward<Args>(args)...);
    detail::print(c.args(), c.kwargs());
}

#if defined(WITH_THREAD) && !defined(PYPY_VERSION)

/* The functions below essentially reproduce the PyGILState_* API using a RAII
 * pattern, but there are a few important differences:
 *
 * 1. When acquiring the GIL from an non-main thread during the finalization
 *    phase, the GILState API blindly terminates the calling thread, which
 *    is often not what is wanted. This API does not do this.
 *
 * 2. The gil_scoped_release function can optionally cut the relationship
 *    of a PyThreadState and its associated thread, which allows moving it to
 *    another thread (this is a fairly rare/advanced use case).
 *
 * 3. The reference count of an acquired thread state can be controlled. This
 *    can be handy to prevent cases where callbacks issued from an external
 *    thread would otherwise constantly construct and destroy thread state data
 *    structures.
 *
 * See the Python bindings of NanoGUI (http://github.com/wjakob/nanogui) for an
 * example which uses features 2 and 3 to migrate the Python thread of
 * execution to another thread (to run the event loop on the original thread,
 * in this case).
 */

class gil_scoped_acquire {
public:
    PYBIND11_NOINLINE gil_scoped_acquire() {
        auto const &internals = detail::get_internals();
        tstate = (PyThreadState *) PyThread_get_key_value(internals.tstate);

        if (!tstate) {
            tstate = PyThreadState_New(internals.istate);
            #if !defined(NDEBUG)
                if (!tstate)
                    pybind11_fail("scoped_acquire: could not create thread state!");
            #endif
            tstate->gilstate_counter = 0;
            #if PY_MAJOR_VERSION < 3
                PyThread_delete_key_value(internals.tstate);
            #endif
            PyThread_set_key_value(internals.tstate, tstate);
        } else {
            release = detail::get_thread_state_unchecked() != tstate;
        }

        if (release) {
            /* Work around an annoying assertion in PyThreadState_Swap */
            #if defined(Py_DEBUG)
                PyInterpreterState *interp = tstate->interp;
                tstate->interp = nullptr;
            #endif
            PyEval_AcquireThread(tstate);
            #if defined(Py_DEBUG)
                tstate->interp = interp;
            #endif
        }

        inc_ref();
    }

    void inc_ref() {
        ++tstate->gilstate_counter;
    }

    PYBIND11_NOINLINE void dec_ref() {
        --tstate->gilstate_counter;
        #if !defined(NDEBUG)
            if (detail::get_thread_state_unchecked() != tstate)
                pybind11_fail("scoped_acquire::dec_ref(): thread state must be current!");
            if (tstate->gilstate_counter < 0)
                pybind11_fail("scoped_acquire::dec_ref(): reference count underflow!");
        #endif
        if (tstate->gilstate_counter == 0) {
            #if !defined(NDEBUG)
                if (!release)
                    pybind11_fail("scoped_acquire::dec_ref(): internal error!");
            #endif
            PyThreadState_Clear(tstate);
            PyThreadState_DeleteCurrent();
            PyThread_delete_key_value(detail::get_internals().tstate);
            release = false;
        }
    }

    PYBIND11_NOINLINE ~gil_scoped_acquire() {
        dec_ref();
        if (release)
           PyEval_SaveThread();
    }
private:
    PyThreadState *tstate = nullptr;
    bool release = true;
};

class gil_scoped_release {
public:
    explicit gil_scoped_release(bool disassoc = false) : disassoc(disassoc) {
        // `get_internals()` must be called here unconditionally in order to initialize
        // `internals.tstate` for subsequent `gil_scoped_acquire` calls. Otherwise, an
        // initialization race could occur as multiple threads try `gil_scoped_acquire`.
        const auto &internals = detail::get_internals();
        tstate = PyEval_SaveThread();
        if (disassoc) {
            auto key = internals.tstate;
            #if PY_MAJOR_VERSION < 3
                PyThread_delete_key_value(key);
            #else
                PyThread_set_key_value(key, nullptr);
            #endif
        }
    }
    ~gil_scoped_release() {
        if (!tstate)
            return;
        PyEval_RestoreThread(tstate);
        if (disassoc) {
            auto key = detail::get_internals().tstate;
            #if PY_MAJOR_VERSION < 3
                PyThread_delete_key_value(key);
            #endif
            PyThread_set_key_value(key, tstate);
        }
    }
private:
    PyThreadState *tstate;
    bool disassoc;
};
#elif defined(PYPY_VERSION)
class gil_scoped_acquire {
    PyGILState_STATE state;
public:
    gil_scoped_acquire() { state = PyGILState_Ensure(); }
    ~gil_scoped_acquire() { PyGILState_Release(state); }
};

class gil_scoped_release {
    PyThreadState *state;
public:
    gil_scoped_release() { state = PyEval_SaveThread(); }
    ~gil_scoped_release() { PyEval_RestoreThread(state); }
};
#else
class gil_scoped_acquire { };
class gil_scoped_release { };
#endif

error_already_set::~error_already_set() {
    if (type) {
        gil_scoped_acquire gil;
        type.release().dec_ref();
        value.release().dec_ref();
        trace.release().dec_ref();
    }
}

inline function get_type_overload(const void *this_ptr, const detail::type_info *this_type, const char *name)  {
    handle self = detail::get_object_handle(this_ptr, this_type);
    if (!self)
        return function();
    handle type = self.get_type();
    auto key = std::make_pair(type.ptr(), name);

    /* Cache functions that aren't overloaded in Python to avoid
       many costly Python dictionary lookups below */
    auto &cache = detail::get_internals().inactive_overload_cache;
    if (cache.find(key) != cache.end())
        return function();

    function overload = getattr(self, name, function());
    if (overload.is_cpp_function()) {
        cache.insert(key);
        return function();
    }

    /* Don't call dispatch code if invoked from overridden function.
       Unfortunately this doesn't work on PyPy. */
#if !defined(PYPY_VERSION)
    PyFrameObject *frame = PyThreadState_Get()->frame;
    if (frame && (std::string) str(frame->f_code->co_name) == name &&
        frame->f_code->co_argcount > 0) {
        PyFrame_FastToLocals(frame);
        PyObject *self_caller = PyDict_GetItem(
            frame->f_locals, PyTuple_GET_ITEM(frame->f_code->co_varnames, 0));
        if (self_caller == self.ptr())
            return function();
    }
#else
    /* PyPy currently doesn't provide a detailed cpyext emulation of
       frame objects, so we have to emulate this using Python. This
       is going to be slow..*/
    dict d; d["self"] = self; d["name"] = pybind11::str(name);
    PyObject *result = PyRun_String(
        "import inspect\n"
        "frame = inspect.currentframe()\n"
        "if frame is not None:\n"
        "    frame = frame.f_back\n"
        "    if frame is not None and str(frame.f_code.co_name) == name and "
        "frame.f_code.co_argcount > 0:\n"
        "        self_caller = frame.f_locals[frame.f_code.co_varnames[0]]\n"
        "        if self_caller == self:\n"
        "            self = None\n",
        Py_file_input, d.ptr(), d.ptr());
    if (result == nullptr)
        throw error_already_set();
    if (d["self"].is_none())
        return function();
    Py_DECREF(result);
#endif

    return overload;
}

template <class T> function get_overload(const T *this_ptr, const char *name) {
    auto tinfo = detail::get_type_info(typeid(T));
    return tinfo ? get_type_overload(this_ptr, tinfo, name) : function();
}

#define PYBIND11_OVERLOAD_INT(ret_type, cname, name, ...) { \
        pybind11::gil_scoped_acquire gil; \
        pybind11::function overload = pybind11::get_overload(static_cast<const cname *>(this), name); \
        if (overload) { \
            auto o = overload(__VA_ARGS__); \
            if (pybind11::detail::cast_is_temporary_value_reference<ret_type>::value) { \
                static pybind11::detail::overload_caster_t<ret_type> caster; \
                return pybind11::detail::cast_ref<ret_type>(std::move(o), caster); \
            } \
            else return pybind11::detail::cast_safe<ret_type>(std::move(o)); \
        } \
    }

#define PYBIND11_OVERLOAD_NAME(ret_type, cname, name, fn, ...) \
    PYBIND11_OVERLOAD_INT(ret_type, cname, name, __VA_ARGS__) \
    return cname::fn(__VA_ARGS__)

#define PYBIND11_OVERLOAD_PURE_NAME(ret_type, cname, name, fn, ...) \
    PYBIND11_OVERLOAD_INT(ret_type, cname, name, __VA_ARGS__) \
    pybind11::pybind11_fail("Tried to call pure virtual function \"" #cname "::" name "\"");

#define PYBIND11_OVERLOAD(ret_type, cname, fn, ...) \
    PYBIND11_OVERLOAD_NAME(ret_type, cname, #fn, fn, __VA_ARGS__)

#define PYBIND11_OVERLOAD_PURE(ret_type, cname, fn, ...) \
    PYBIND11_OVERLOAD_PURE_NAME(ret_type, cname, #fn, fn, __VA_ARGS__)

NAMESPACE_END(pybind11)

#if defined(_MSC_VER)
#  pragma warning(pop)
#elif defined(__INTEL_COMPILER)
/* Leave ignored warnings on */
#elif defined(__GNUG__) && !defined(__clang__)
#  pragma GCC diagnostic pop
#endif