simple_dataset.py 4.0 KB
Newer Older
D
dyning 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import os
import random
from paddle.io import Dataset

from .imaug import transform, create_operators
D
dyning 已提交
20

D
dyning 已提交
21 22

class SimpleDataSet(Dataset):
23
    def __init__(self, config, mode, logger, seed=None):
D
dyning 已提交
24
        super(SimpleDataSet, self).__init__()
25
        self.logger = logger
26
        self.mode = mode.lower()
D
dyning 已提交
27

D
dyning 已提交
28 29 30
        global_config = config['Global']
        dataset_config = config[mode]['dataset']
        loader_config = config[mode]['loader']
D
dyning 已提交
31

D
dyning 已提交
32 33 34
        self.delimiter = dataset_config.get('delimiter', '\t')
        label_file_list = dataset_config.pop('label_file_list')
        data_source_num = len(label_file_list)
35 36
        ratio_list = dataset_config.get("ratio_list", [1.0])
        if isinstance(ratio_list, (float, int)):
L
LDOUBLEV 已提交
37
            ratio_list = [float(ratio_list)] * int(data_source_num)
D
dyning 已提交
38 39 40 41

        assert len(
            ratio_list
        ) == data_source_num, "The length of ratio_list should be the same as the file_list."
D
dyning 已提交
42 43
        self.data_dir = dataset_config['data_dir']
        self.do_shuffle = loader_config['shuffle']
D
dyning 已提交
44

45
        self.seed = seed
D
dyning 已提交
46
        logger.info("Initialize indexs of datasets:%s" % label_file_list)
L
LDOUBLEV 已提交
47
        self.data_lines = self.get_image_info_list(label_file_list, ratio_list)
48
        self.data_idx_order_list = list(range(len(self.data_lines)))
49
        if self.mode == "train" and self.do_shuffle:
50
            self.shuffle_data_random()
D
dyning 已提交
51 52
        self.ops = create_operators(dataset_config['transforms'], global_config)

L
LDOUBLEV 已提交
53
    def get_image_info_list(self, file_list, ratio_list):
D
dyning 已提交
54 55
        if isinstance(file_list, str):
            file_list = [file_list]
56 57
        data_lines = []
        for idx, file in enumerate(file_list):
D
dyning 已提交
58 59
            with open(file, "rb") as f:
                lines = f.readlines()
60 61 62 63
                if self.mode == "train" or ratio_list[idx] < 1.0:
                    random.seed(self.seed)
                    lines = random.sample(lines,
                                          round(len(lines) * ratio_list[idx]))
64 65
                data_lines.extend(lines)
        return data_lines
D
dyning 已提交
66 67

    def shuffle_data_random(self):
68 69
        random.seed(self.seed)
        random.shuffle(self.data_lines)
D
dyning 已提交
70
        return
D
dyning 已提交
71

D
dyning 已提交
72
    def __getitem__(self, idx):
73 74
        file_idx = self.data_idx_order_list[idx]
        data_line = self.data_lines[file_idx]
75 76 77
        try:
            data_line = data_line.decode('utf-8')
            substr = data_line.strip("\n").split(self.delimiter)
L
littletomatodonkey 已提交
78 79
            file_name = substr[0]
            label = substr[1]
80 81
            img_path = os.path.join(self.data_dir, file_name)
            data = {'img_path': img_path, 'label': label}
L
LDOUBLEV 已提交
82 83
            if not os.path.exists(img_path):
                raise Exception("{} does not exist!".format(img_path))
84 85 86 87 88 89 90 91 92
            with open(data['img_path'], 'rb') as f:
                img = f.read()
                data['image'] = img
            outs = transform(data, self.ops)
        except Exception as e:
            self.logger.error(
                "When parsing line {}, error happened with msg: {}".format(
                    data_line, e))
            outs = None
D
dyning 已提交
93
        if outs is None:
94 95 96 97
            # during evaluation, we should fix the idx to get same results for many times of evaluation.
            rnd_idx = np.random.randint(self.__len__(
            )) if self.mode == "train" else (idx + 1) % self.__len__()
            return self.__getitem__(rnd_idx)
D
dyning 已提交
98 99 100 101
        return outs

    def __len__(self):
        return len(self.data_idx_order_list)