utility.py 12.1 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import os, sys
from ppocr.utils.utility import initial_logger
logger = initial_logger()
from paddle.fluid.core import PaddleTensor
from paddle.fluid.core import AnalysisConfig
from paddle.fluid.core import create_paddle_predictor
import cv2
import numpy as np
L
LDOUBLEV 已提交
24 25
import json
from PIL import Image, ImageDraw, ImageFont
26
import math
L
LDOUBLEV 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48


def parse_args():
    def str2bool(v):
        return v.lower() in ("true", "t", "1")

    parser = argparse.ArgumentParser()
    #params for prediction engine
    parser.add_argument("--use_gpu", type=str2bool, default=True)
    parser.add_argument("--ir_optim", type=str2bool, default=True)
    parser.add_argument("--use_tensorrt", type=str2bool, default=False)
    parser.add_argument("--gpu_mem", type=int, default=8000)

    #params for text detector
    parser.add_argument("--image_dir", type=str)
    parser.add_argument("--det_algorithm", type=str, default='DB')
    parser.add_argument("--det_model_dir", type=str)
    parser.add_argument("--det_max_side_len", type=float, default=960)

    #DB parmas
    parser.add_argument("--det_db_thresh", type=float, default=0.3)
    parser.add_argument("--det_db_box_thresh", type=float, default=0.5)
49
    parser.add_argument("--det_db_unclip_ratio", type=float, default=2.0)
L
LDOUBLEV 已提交
50 51 52 53 54 55 56 57 58

    #EAST parmas
    parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
    parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
    parser.add_argument("--det_east_nms_thresh", type=float, default=0.2)

    #params for text recognizer
    parser.add_argument("--rec_algorithm", type=str, default='CRNN')
    parser.add_argument("--rec_model_dir", type=str)
T
fix bug  
tink2123 已提交
59 60
    parser.add_argument("--rec_image_shape", type=str, default="3, 32, 320")
    parser.add_argument("--rec_char_type", type=str, default='ch')
61
    parser.add_argument("--rec_batch_num", type=int, default=30)
T
fix bug  
tink2123 已提交
62
    parser.add_argument("--max_text_length", type=int, default=25)
L
LDOUBLEV 已提交
63 64 65 66
    parser.add_argument(
        "--rec_char_dict_path",
        type=str,
        default="./ppocr/utils/ppocr_keys_v1.txt")
T
tink2123 已提交
67
    parser.add_argument("--use_space_char", type=bool, default=True)
D
dyning 已提交
68
    parser.add_argument("--enable_mkldnn", type=bool, default=False)
L
LDOUBLEV 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
    return parser.parse_args()


def create_predictor(args, mode):
    if mode == "det":
        model_dir = args.det_model_dir
    else:
        model_dir = args.rec_model_dir

    if model_dir is None:
        logger.info("not find {} model file path {}".format(mode, model_dir))
        sys.exit(0)
    model_file_path = model_dir + "/model"
    params_file_path = model_dir + "/params"
    if not os.path.exists(model_file_path):
        logger.info("not find model file path {}".format(model_file_path))
        sys.exit(0)
    if not os.path.exists(params_file_path):
        logger.info("not find params file path {}".format(params_file_path))
        sys.exit(0)

    config = AnalysisConfig(model_file_path, params_file_path)

    if args.use_gpu:
        config.enable_use_gpu(args.gpu_mem, 0)
    else:
        config.disable_gpu()
D
dyning 已提交
96 97 98
        config.set_cpu_math_library_num_threads(6)
        if args.enable_mkldnn:
            config.enable_mkldnn()
L
LDOUBLEV 已提交
99

T
tink2123 已提交
100
    #config.enable_memory_optim()
L
LDOUBLEV 已提交
101
    config.disable_glog_info()
L
LDOUBLEV 已提交
102

L
LDOUBLEV 已提交
103
    # use zero copy
104
    config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
L
LDOUBLEV 已提交
105 106 107 108 109 110 111 112 113 114 115 116
    config.switch_use_feed_fetch_ops(False)
    predictor = create_paddle_predictor(config)
    input_names = predictor.get_input_names()
    input_tensor = predictor.get_input_tensor(input_names[0])
    output_names = predictor.get_output_names()
    output_tensors = []
    for output_name in output_names:
        output_tensor = predictor.get_output_tensor(output_name)
        output_tensors.append(output_tensor)
    return predictor, input_tensor, output_tensors


L
LDOUBLEV 已提交
117
def draw_text_det_res(dt_boxes, img_path):
L
LDOUBLEV 已提交
118 119 120 121
    src_im = cv2.imread(img_path)
    for box in dt_boxes:
        box = np.array(box).astype(np.int32).reshape(-1, 2)
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
L
LDOUBLEV 已提交
122
    return src_im
L
LDOUBLEV 已提交
123 124


L
LDOUBLEV 已提交
125 126
def resize_img(img, input_size=600):
    """
L
LDOUBLEV 已提交
127
    resize img and limit the longest side of the image to input_size
L
LDOUBLEV 已提交
128 129 130 131 132 133 134 135 136 137
    """
    img = np.array(img)
    im_shape = img.shape
    im_size_max = np.max(im_shape[0:2])
    im_scale = float(input_size) / float(im_size_max)
    im = cv2.resize(img, None, None, fx=im_scale, fy=im_scale)
    return im


def draw_ocr(image, boxes, txts, scores, draw_txt=True, drop_score=0.5):
138 139 140
    """
    Visualize the results of OCR detection and recognition
    args:
L
LDOUBLEV 已提交
141
        image(Image|array): RGB image
142 143 144 145 146 147 148 149
        boxes(list): boxes with shape(N, 4, 2)
        txts(list): the texts
        scores(list): txxs corresponding scores
        draw_txt(bool): whether draw text or not
        drop_score(float): only scores greater than drop_threshold will be visualized
    return(array):
        the visualized img
    """
L
LDOUBLEV 已提交
150 151
    if scores is None:
        scores = [1] * len(boxes)
L
LDOUBLEV 已提交
152
    for (box, score) in zip(boxes, scores):
L
LDOUBLEV 已提交
153
        if score < drop_score or math.isnan(score):
L
LDOUBLEV 已提交
154
            continue
L
LDOUBLEV 已提交
155
        box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
L
LDOUBLEV 已提交
156
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
L
LDOUBLEV 已提交
157 158

    if draw_txt:
L
LDOUBLEV 已提交
159
        img = np.array(resize_img(image, input_size=600))
160 161 162
        txt_img = text_visual(
            txts, scores, img_h=img.shape[0], img_w=600, threshold=drop_score)
        img = np.concatenate([np.array(img), np.array(txt_img)], axis=1)
L
LDOUBLEV 已提交
163 164
        return img
    return image
165 166


167 168 169 170
def draw_ocr_box_txt(image, boxes, txts):
    h, w = image.height, image.width
    img_left = image.copy()
    img_right = Image.new('RGB', (w, h), (255, 255, 255))
171 172

    import random
L
LDOUBLEV 已提交
173

174 175 176
    random.seed(0)
    draw_left = ImageDraw.Draw(img_left)
    draw_right = ImageDraw.Draw(img_right)
177
    for (box, txt) in zip(boxes, txts):
T
tink2123 已提交
178 179
        color = (random.randint(0, 255), random.randint(0, 255),
                 random.randint(0, 255))
180
        draw_left.polygon(box, fill=color)
T
tink2123 已提交
181 182 183 184 185 186 187 188 189 190
        draw_right.polygon(
            [
                box[0][0], box[0][1], box[1][0], box[1][1], box[2][0],
                box[2][1], box[3][0], box[3][1]
            ],
            outline=color)
        box_height = math.sqrt((box[0][0] - box[3][0])**2 + (box[0][1] - box[3][
            1])**2)
        box_width = math.sqrt((box[0][0] - box[1][0])**2 + (box[0][1] - box[1][
            1])**2)
191 192
        if box_height > 2 * box_width:
            font_size = max(int(box_width * 0.9), 10)
T
tink2123 已提交
193 194
            font = ImageFont.truetype(
                "./doc/simfang.ttf", font_size, encoding="utf-8")
195 196 197
            cur_y = box[0][1]
            for c in txt:
                char_size = font.getsize(c)
T
tink2123 已提交
198 199
                draw_right.text(
                    (box[0][0] + 3, cur_y), c, fill=(0, 0, 0), font=font)
200 201 202
                cur_y += char_size[1]
        else:
            font_size = max(int(box_height * 0.8), 10)
T
tink2123 已提交
203 204 205 206
            font = ImageFont.truetype(
                "./doc/simfang.ttf", font_size, encoding="utf-8")
            draw_right.text(
                [box[0][0], box[0][1]], txt, fill=(0, 0, 0), font=font)
207 208 209 210
    img_left = Image.blend(image, img_left, 0.5)
    img_show = Image.new('RGB', (w * 2, h), (255, 255, 255))
    img_show.paste(img_left, (0, 0, w, h))
    img_show.paste(img_right, (w, 0, w * 2, h))
211 212 213
    return np.array(img_show)


214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
def str_count(s):
    """
    Count the number of Chinese characters,
    a single English character and a single number
    equal to half the length of Chinese characters.

    args:
        s(string): the input of string
    return(int):
        the number of Chinese characters
    """
    import string
    count_zh = count_pu = 0
    s_len = len(s)
    en_dg_count = 0
    for c in s:
        if c in string.ascii_letters or c.isdigit() or c.isspace():
            en_dg_count += 1
        elif c.isalpha():
            count_zh += 1
        else:
            count_pu += 1
    return s_len - math.ceil(en_dg_count / 2)


def text_visual(texts, scores, img_h=400, img_w=600, threshold=0.):
    """
    create new blank img and draw txt on it
    args:
        texts(list): the text will be draw
        scores(list|None): corresponding score of each txt
        img_h(int): the height of blank img
        img_w(int): the width of blank img
    return(array):

    """
    if scores is not None:
        assert len(texts) == len(
            scores), "The number of txts and corresponding scores must match"

    def create_blank_img():
        blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255
        blank_img[:, img_w - 1:] = 0
L
LDOUBLEV 已提交
257 258
        blank_img = Image.fromarray(blank_img).convert("RGB")
        draw_txt = ImageDraw.Draw(blank_img)
259
        return blank_img, draw_txt
L
LDOUBLEV 已提交
260

261 262 263 264
    blank_img, draw_txt = create_blank_img()

    font_size = 20
    txt_color = (0, 0, 0)
265
    font = ImageFont.truetype("./doc/simfang.ttf", font_size, encoding="utf-8")
266 267 268

    gap = font_size + 5
    txt_img_list = []
L
LDOUBLEV 已提交
269
    count, index = 1, 0
270 271
    for idx, txt in enumerate(texts):
        index += 1
L
LDOUBLEV 已提交
272
        if scores[idx] < threshold or math.isnan(scores[idx]):
273 274 275 276 277 278 279 280 281 282 283
            index -= 1
            continue
        first_line = True
        while str_count(txt) >= img_w // font_size - 4:
            tmp = txt
            txt = tmp[:img_w // font_size - 4]
            if first_line:
                new_txt = str(index) + ': ' + txt
                first_line = False
            else:
                new_txt = '    ' + txt
L
LDOUBLEV 已提交
284
            draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
285 286 287 288 289
            txt = tmp[img_w // font_size - 4:]
            if count >= img_h // gap - 1:
                txt_img_list.append(np.array(blank_img))
                blank_img, draw_txt = create_blank_img()
                count = 0
L
LDOUBLEV 已提交
290
            count += 1
291 292 293
        if first_line:
            new_txt = str(index) + ': ' + txt + '   ' + '%.3f' % (scores[idx])
        else:
L
LDOUBLEV 已提交
294
            new_txt = "  " + txt + "  " + '%.3f' % (scores[idx])
L
LDOUBLEV 已提交
295
        draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
296
        # whether add new blank img or not
L
LDOUBLEV 已提交
297
        if count >= img_h // gap - 1 and idx + 1 < len(texts):
298 299 300
            txt_img_list.append(np.array(blank_img))
            blank_img, draw_txt = create_blank_img()
            count = 0
L
LDOUBLEV 已提交
301
        count += 1
302 303 304 305 306 307
    txt_img_list.append(np.array(blank_img))
    if len(txt_img_list) == 1:
        blank_img = np.array(txt_img_list[0])
    else:
        blank_img = np.concatenate(txt_img_list, axis=1)
    return np.array(blank_img)
L
LDOUBLEV 已提交
308 309


D
dyning 已提交
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
def base64_to_cv2(b64str):
    import base64
    data = base64.b64decode(b64str.encode('utf8'))
    data = np.fromstring(data, np.uint8)
    data = cv2.imdecode(data, cv2.IMREAD_COLOR)
    return data


def draw_boxes(image, boxes, scores=None, drop_score=0.5):
    if scores is None:
        scores = [1] * len(boxes)
    for (box, score) in zip(boxes, scores):
        if score < drop_score:
            continue
        box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
    return image


L
LDOUBLEV 已提交
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
if __name__ == '__main__':
    test_img = "./doc/test_v2"
    predict_txt = "./doc/predict.txt"
    f = open(predict_txt, 'r')
    data = f.readlines()
    img_path, anno = data[0].strip().split('\t')
    img_name = os.path.basename(img_path)
    img_path = os.path.join(test_img, img_name)
    image = Image.open(img_path)

    data = json.loads(anno)
    boxes, txts, scores = [], [], []
    for dic in data:
        boxes.append(dic['points'])
        txts.append(dic['transcription'])
        scores.append(round(dic['scores'], 3))

    new_img = draw_ocr(image, boxes, txts, scores, draw_txt=True)

M
MissPenguin 已提交
348
    cv2.imwrite(img_name, new_img)