pgnet_pp_utils.py 7.0 KB
Newer Older
J
Jethong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle

from extract_textpoint_slow import *
from extract_textpoint_fast import *


class PGNet_PostProcess(object):
    # two different post-process
    def __init__(self, character_dict_path, valid_set, score_thresh, outs_dict,
                 shape_list):
        self.Lexicon_Table = get_dict(character_dict_path)
        self.valid_set = valid_set
        self.score_thresh = score_thresh
        self.outs_dict = outs_dict
        self.shape_list = shape_list

    def pg_postprocess_fast(self):
        p_score = self.outs_dict['f_score']
        p_border = self.outs_dict['f_border']
        p_char = self.outs_dict['f_char']
        p_direction = self.outs_dict['f_direction']
        if isinstance(p_score, paddle.Tensor):
            p_score = p_score[0].numpy()
            p_border = p_border[0].numpy()
            p_direction = p_direction[0].numpy()
            p_char = p_char[0].numpy()
        else:
            p_score = p_score[0]
            p_border = p_border[0]
            p_direction = p_direction[0]
            p_char = p_char[0]

        src_h, src_w, ratio_h, ratio_w = self.shape_list[0]
        instance_yxs_list, seq_strs = generate_pivot_list_fast(
            p_score,
            p_char,
            p_direction,
            self.Lexicon_Table,
            score_thresh=self.score_thresh)
        poly_list, keep_str_list = restore_poly(instance_yxs_list, seq_strs,
                                                p_border, ratio_w, ratio_h,
                                                src_w, src_h, self.valid_set)
        data = {
            'points': poly_list,
            'strs': keep_str_list,
        }
        return data

    def pg_postprocess_slow(self):
        p_score = self.outs_dict['f_score']
        p_border = self.outs_dict['f_border']
        p_char = self.outs_dict['f_char']
        p_direction = self.outs_dict['f_direction']
        if isinstance(p_score, paddle.Tensor):
            p_score = p_score[0].numpy()
            p_border = p_border[0].numpy()
            p_direction = p_direction[0].numpy()
            p_char = p_char[0].numpy()
        else:
            p_score = p_score[0]
            p_border = p_border[0]
            p_direction = p_direction[0]
            p_char = p_char[0]
        src_h, src_w, ratio_h, ratio_w = self.shape_list[0]
        is_curved = self.valid_set == "totaltext"
        instance_yxs_list = generate_pivot_list_slow(
            p_score,
            p_char,
            p_direction,
            score_thresh=self.score_thresh,
            is_backbone=True,
            is_curved=is_curved)
        p_char = paddle.to_tensor(np.expand_dims(p_char, axis=0))
        char_seq_idx_set = []
        for i in range(len(instance_yxs_list)):
            gather_info_lod = paddle.to_tensor(instance_yxs_list[i])
            f_char_map = paddle.transpose(p_char, [0, 2, 3, 1])
            feature_seq = paddle.gather_nd(f_char_map, gather_info_lod)
            feature_seq = np.expand_dims(feature_seq.numpy(), axis=0)
            feature_len = [len(feature_seq[0])]
            featyre_seq = paddle.to_tensor(feature_seq)
            feature_len = np.array([feature_len]).astype(np.int64)
            length = paddle.to_tensor(feature_len)
            seq_pred = paddle.fluid.layers.ctc_greedy_decoder(
                input=featyre_seq, blank=36, input_length=length)
            seq_pred_str = seq_pred[0].numpy().tolist()[0]
            seq_len = seq_pred[1].numpy()[0][0]
            temp_t = []
            for c in seq_pred_str[:seq_len]:
                temp_t.append(c)
            char_seq_idx_set.append(temp_t)
        seq_strs = []
        for char_idx_set in char_seq_idx_set:
            pr_str = ''.join([self.Lexicon_Table[pos] for pos in char_idx_set])
            seq_strs.append(pr_str)
        poly_list = []
        keep_str_list = []
        all_point_list = []
        all_point_pair_list = []
        for yx_center_line, keep_str in zip(instance_yxs_list, seq_strs):
            if len(yx_center_line) == 1:
                yx_center_line.append(yx_center_line[-1])

            offset_expand = 1.0
            if self.valid_set == 'totaltext':
                offset_expand = 1.2

            point_pair_list = []
            for batch_id, y, x in yx_center_line:
                offset = p_border[:, y, x].reshape(2, 2)
                if offset_expand != 1.0:
                    offset_length = np.linalg.norm(
                        offset, axis=1, keepdims=True)
                    expand_length = np.clip(
                        offset_length * (offset_expand - 1),
                        a_min=0.5,
                        a_max=3.0)
                    offset_detal = offset / offset_length * expand_length
                    offset = offset + offset_detal
                ori_yx = np.array([y, x], dtype=np.float32)
                point_pair = (ori_yx + offset)[:, ::-1] * 4.0 / np.array(
                    [ratio_w, ratio_h]).reshape(-1, 2)
                point_pair_list.append(point_pair)

                all_point_list.append([
                    int(round(x * 4.0 / ratio_w)),
                    int(round(y * 4.0 / ratio_h))
                ])
                all_point_pair_list.append(point_pair.round().astype(np.int32)
                                           .tolist())

            detected_poly, pair_length_info = point_pair2poly(point_pair_list)
            detected_poly = expand_poly_along_width(
                detected_poly, shrink_ratio_of_width=0.2)
            detected_poly[:, 0] = np.clip(
                detected_poly[:, 0], a_min=0, a_max=src_w)
            detected_poly[:, 1] = np.clip(
                detected_poly[:, 1], a_min=0, a_max=src_h)

            if len(keep_str) < 2:
                continue

            keep_str_list.append(keep_str)
            detected_poly = np.round(detected_poly).astype('int32')
            if self.valid_set == 'partvgg':
                middle_point = len(detected_poly) // 2
                detected_poly = detected_poly[
                    [0, middle_point - 1, middle_point, -1], :]
                poly_list.append(detected_poly)
            elif self.valid_set == 'totaltext':
                poly_list.append(detected_poly)
            else:
                print('--> Not supported format.')
                exit(-1)
        data = {
            'points': poly_list,
            'strs': keep_str_list,
        }
        return data