readme.md 2.4 KB
Newer Older
T
Tangmq 已提交
1
English | [简体中文](README_cn.md)
2

T
Tangmq 已提交
3 4
## Introduction
Many user hopes package the PaddleOCR service into an docker image, so that it can be quickly released and used in the docker or k8s environment.
5

T
Tangmq 已提交
6
This page provide some standardized code to achieve this goal. You can quickly publish the PaddleOCR project into a callable Restful API service through the following steps. (At present, the deployment based on the HubServing mode is implemented first, and author plans to increase the deployment of the PaddleServing mode in the futrue)
7

T
Tangmq 已提交
8 9 10 11 12 13
## 1. Prerequisites

You need to install the following basic components first:
a. Docker
b. Graphics driver and CUDA 10.0+(GPU)
c. NVIDIA Container Toolkit(GPU,Docker 19.03+ can skip this)
14 15
d. cuDNN 7.6+(GPU)

T
Tangmq 已提交
16 17
## 2. Build Image
a. Download PaddleOCR sourcecode
18 19 20
```
git clone https://github.com/PaddlePaddle/PaddleOCR.git
```
T
Tangmq 已提交
21
b. Goto Dockerfile directory(ps:Need to distinguish between cpu and gpu version, the following takes cpu as an example, gpu version needs to replace the keyword)
22 23 24
```
cd docker/cpu
```
T
Tangmq 已提交
25
c. Build image
26 27 28 29
```
docker build -t paddleocr:cpu . 
```

T
Tangmq 已提交
30 31
## 3. Start container
a. CPU version
32 33 34
```
sudo docker run -dp 8866:8866 --name paddle_ocr paddleocr:cpu
```
T
Tangmq 已提交
35
b. GPU version (base on NVIDIA Container Toolkit)
36 37 38
```
sudo nvidia-docker run -dp 8866:8866 --name paddle_ocr paddleocr:gpu
```
T
Tangmq 已提交
39
c. GPU version (Docker 19.03++)
40 41 42
```
sudo docker run -dp 8866:8866 --gpus all --name paddle_ocr paddleocr:gpu
```
T
Tangmq 已提交
43
d. Check service status(If you can see the following statement then it means completed:Successfully installed ocr_system && Running on http://0.0.0.0:8866/)
44 45 46 47
```
docker logs -f paddle_ocr
```

T
Tangmq 已提交
48 49 50 51
## 4. Test
a. Calculate the Base64 encoding of the picture to be recognized (if you just test, you can use a free online tool, like:https://freeonlinetools24.com/base64-image/)
b. Post a service request(sample request in sample_request.txt)

52
```
T
Tangmq 已提交
53
curl -H "Content-Type:application/json" -X POST --data "{\"images\": [\"Input image Base64 encode(need to delete the code 'data:image/jpg;base64,')\"]}" http://localhost:8866/predict/ocr_system
54
```
T
Tangmq 已提交
55
c. Get resposne(If the call is successful, the following result will be returned)
56 57 58
```
{"msg":"","results":[[{"confidence":0.8403433561325073,"text":"约定","text_region":[[345,377],[641,390],[634,540],[339,528]]},{"confidence":0.8131805658340454,"text":"最终相遇","text_region":[[356,532],[624,530],[624,596],[356,598]]}]],"status":"0"}
```