rec_rpc_server.py 7.2 KB
Newer Older
W
wangjiawei04 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle_serving_client import Client
from paddle_serving_app.reader import OCRReader
import cv2
import sys
import numpy as np
import os
import time
import re
import base64
from tools.infer.predict_rec import TextRecognizer
25
from params import read_params
W
wangjiawei04 已提交
26

27
global_args = read_params()
W
wangjiawei04 已提交
28 29 30 31 32 33 34 35 36 37
if global_args.use_gpu:
    from paddle_serving_server_gpu.web_service import WebService
else:
    from paddle_serving_server.web_service import WebService


class TextRecognizerHelper(TextRecognizer):
    def __init__(self, args):
        super(TextRecognizerHelper, self).__init__(args)
        if self.loss_type == "ctc":
W
wangjiawei04 已提交
38
            self.fetch = ["save_infer_model/scale_0.tmp_0", "save_infer_model/scale_1.tmp_0"]
W
wangjiawei04 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

    def preprocess(self, img_list):
        img_num = len(img_list)
        args = {}
        # Calculate the aspect ratio of all text bars
        width_list = []
        for img in img_list:
            width_list.append(img.shape[1] / float(img.shape[0]))
        indices = np.argsort(np.array(width_list))
        args["indices"] = indices
        predict_time = 0
        beg_img_no = 0
        end_img_no = img_num
        norm_img_batch = []
        max_wh_ratio = 0
        for ino in range(beg_img_no, end_img_no):
            h, w = img_list[indices[ino]].shape[0:2]
            wh_ratio = w * 1.0 / h
            max_wh_ratio = max(max_wh_ratio, wh_ratio)
        for ino in range(beg_img_no, end_img_no):
            if self.loss_type != "srn":
                norm_img = self.resize_norm_img(img_list[indices[ino]],
                                                max_wh_ratio)
                norm_img = norm_img[np.newaxis, :]
                norm_img_batch.append(norm_img)
            else:
                norm_img = self.process_image_srn(img_list[indices[ino]],
                                                  self.rec_image_shape, 8, 25,
                                                  self.char_ops)
                encoder_word_pos_list = []
                gsrm_word_pos_list = []
                gsrm_slf_attn_bias1_list = []
                gsrm_slf_attn_bias2_list = []
                encoder_word_pos_list.append(norm_img[1])
                gsrm_word_pos_list.append(norm_img[2])
                gsrm_slf_attn_bias1_list.append(norm_img[3])
                gsrm_slf_attn_bias2_list.append(norm_img[4])
                norm_img_batch.append(norm_img[0])

        norm_img_batch = np.concatenate(norm_img_batch, axis=0)
        if img_num > 1:
            feed = [{
                "image": norm_img_batch[x]
            } for x in range(norm_img_batch.shape[0])]
        else:
            feed = {"image": norm_img_batch[0]}
        return feed, self.fetch, args

    def postprocess(self, outputs, args):
        if self.loss_type == "ctc":
            rec_idx_batch = outputs[0]
            predict_batch = outputs[1]
W
wangjiawei04 已提交
91 92
            rec_idx_lod = args["save_infer_model/scale_0.tmp_0.lod"]
            predict_lod = args["save_infer_model/scale_1.tmp_0.lod"]
W
wangjiawei04 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
            indices = args["indices"]
            rec_res = [['', 0.0]] * (len(rec_idx_lod) - 1)
            for rno in range(len(rec_idx_lod) - 1):
                beg = rec_idx_lod[rno]
                end = rec_idx_lod[rno + 1]
                rec_idx_tmp = rec_idx_batch[beg:end, 0]
                preds_text = self.char_ops.decode(rec_idx_tmp)
                beg = predict_lod[rno]
                end = predict_lod[rno + 1]
                probs = predict_batch[beg:end, :]
                ind = np.argmax(probs, axis=1)
                blank = probs.shape[1]
                valid_ind = np.where(ind != (blank - 1))[0]
                if len(valid_ind) == 0:
                    continue
                score = np.mean(probs[valid_ind, ind[valid_ind]])
                rec_res[indices[rno]] = [preds_text, score]
        elif self.loss_type == 'srn':
            char_num = self.char_ops.get_char_num()
            preds = rec_idx_batch.reshape(-1)
            elapse = time.time() - starttime
            predict_time += elapse
            total_preds = preds.copy()
            for ino in range(int(len(rec_idx_batch) / self.text_len)):
                preds = total_preds[ino * self.text_len:(ino + 1) *
                                    self.text_len]
                ind = np.argmax(probs, axis=1)
                valid_ind = np.where(preds != int(char_num - 1))[0]
                if len(valid_ind) == 0:
                    continue
                score = np.mean(probs[valid_ind, ind[valid_ind]])
                preds = preds[:valid_ind[-1] + 1]
                preds_text = self.char_ops.decode(preds)
                rec_res[indices[ino]] = [preds_text, score]
        else:
            for rno in range(len(rec_idx_batch)):
                end_pos = np.where(rec_idx_batch[rno, :] == 1)[0]
                if len(end_pos) <= 1:
                    preds = rec_idx_batch[rno, 1:]
                    score = np.mean(predict_batch[rno, 1:])
                else:
                    preds = rec_idx_batch[rno, 1:end_pos[1]]
                    score = np.mean(predict_batch[rno, 1:end_pos[1]])
                preds_text = self.char_ops.decode(preds)
                rec_res[indices[rno]] = [preds_text, score]
        return rec_res


class OCRService(WebService):
    def init_rec(self):
        self.ocr_reader = OCRReader()
        self.text_recognizer = TextRecognizerHelper(global_args)

    def preprocess(self, feed=[], fetch=[]):
        # TODO: to handle batch rec images
        img_list = []
        for feed_data in feed:
            data = base64.b64decode(feed_data["image"].encode('utf8'))
            data = np.fromstring(data, np.uint8)
            im = cv2.imdecode(data, cv2.IMREAD_COLOR)
            img_list.append(im)
        feed, fetch, self.tmp_args = self.text_recognizer.preprocess(img_list)
        return feed, fetch

    def postprocess(self, feed={}, fetch=[], fetch_map=None):
        outputs = [fetch_map[x] for x in self.text_recognizer.fetch]
        for x in fetch_map.keys():
            if ".lod" in x:
                self.tmp_args[x] = fetch_map[x]
        rec_res = self.text_recognizer.postprocess(outputs, self.tmp_args)
        res = {
            "pred_text": [x[0] for x in rec_res],
            "score": [str(x[1]) for x in rec_res]
        }
        return res


if __name__ == "__main__":
    ocr_service = OCRService(name="ocr")
    ocr_service.load_model_config(global_args.rec_model_dir)
    ocr_service.init_rec()
    if global_args.use_gpu:
        ocr_service.prepare_server(
            workdir="workdir", port=9292, device="gpu", gpuid=0)
    else:
        ocr_service.prepare_server(workdir="workdir", port=9292, device="cpu")
    ocr_service.run_rpc_service()
    ocr_service.run_web_service()