rec_japan_lite_train.yml 2.2 KB
Newer Older
X
xiaoting 已提交
1
Global:
T
tink2123 已提交
2
  use_gpu: True
X
xiaoting 已提交
3 4 5 6 7
  epoch_num: 500
  log_smooth_window: 20
  print_batch_step: 10
  save_model_dir: ./output/rec_japan_lite
  save_epoch_step: 3
8
  # evaluation is run every 2000 iterations after the 0th iteration
X
xiaoting 已提交
9 10 11 12 13 14 15 16 17
  eval_batch_step: [0, 2000]
  # if pretrained_model is saved in static mode, load_static_weights must set to True
  cal_metric_during_train: True
  pretrained_model:
  checkpoints: 
  save_inference_dir:
  use_visualdl: False
  infer_img:
  # for data or label process
T
tink2123 已提交
18
  character_dict_path: ppocr/utils/dict/japan_dict.txt
X
xiaoting 已提交
19 20 21
  character_type: japan
  max_text_length: 25
  infer_mode: False
T
tink2123 已提交
22
  use_space_char: False
X
xiaoting 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102


Optimizer:
  name: Adam
  beta1: 0.9
  beta2: 0.999
  lr:
    name: Cosine
    learning_rate: 0.001
  regularizer:
    name: 'L2'
    factor: 0.00001

Architecture:
  model_type: rec
  algorithm: CRNN
  Transform:
  Backbone:
    name: MobileNetV3
    scale: 0.5
    model_name: small
    small_stride: [1, 2, 2, 2]
  Neck:
    name: SequenceEncoder
    encoder_type: rnn
    hidden_size: 48
  Head:
    name: CTCHead
    fc_decay: 0.00001

Loss:
  name: CTCLoss

PostProcess:
  name: CTCLabelDecode

Metric:
  name: RecMetric
  main_indicator: acc

Train:
  dataset:
    name: SimpleDataSet
    data_dir: ./train_data/
    label_file_list: ["./train_data/train_list.txt"]
    transforms:
      - DecodeImage: # load image
          img_mode: BGR
          channel_first: False
      - RecAug: 
      - CTCLabelEncode: # Class handling label
      - RecResizeImg:
          image_shape: [3, 32, 320]
      - KeepKeys:
          keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
  loader:
    shuffle: True
    batch_size_per_card: 256
    drop_last: True
    num_workers: 8

Eval:
  dataset:
    name: SimpleDataSet
    data_dir: ./train_data/
    label_file_list: ["./train_data/eval_list.txt"]
    transforms:
      - DecodeImage: # load image
          img_mode: BGR
          channel_first: False
      - CTCLabelEncode: # Class handling label
      - RecResizeImg:
          image_shape: [3, 32, 320]
      - KeepKeys:
          keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
  loader:
    shuffle: False
    drop_last: False
    batch_size_per_card: 256
    num_workers: 8