ch_PP-OCR_det_dml.yml 4.3 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7
Global:
  use_gpu: true
  epoch_num: 1200
  log_smooth_window: 20
  print_batch_step: 2
  save_model_dir: ./output/ch_db_mv3/
  save_epoch_step: 1200
8
  # evaluation is run every 2000 iterations after the 3000th iteration
L
LDOUBLEV 已提交
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
  eval_batch_step: [3000, 2000]
  cal_metric_during_train: False
  pretrained_model: ./pretrain_models/MobileNetV3_large_x0_5_pretrained
  checkpoints:
  save_inference_dir:
  use_visualdl: False
  infer_img: doc/imgs_en/img_10.jpg
  save_res_path: ./output/det_db/predicts_db.txt

Architecture:
  name: DistillationModel
  algorithm: Distillation
  Models:
    Student:
      pretrained: ./pretrain_models/MobileNetV3_large_x0_5_pretrained
      freeze_params: false
      return_all_feats: false
      model_type: det
      algorithm: DB
      Backbone:
        name: MobileNetV3
        scale: 0.5
        model_name: large
        disable_se: True
      Neck:
        name: DBFPN
        out_channels: 96
      Head:
        name: DBHead
        k: 50
    Student2:
      pretrained: ./pretrain_models/MobileNetV3_large_x0_5_pretrained
      freeze_params: false
      return_all_feats: false
      model_type: det
      algorithm: DB
      Transform:
      Backbone:
        name: MobileNetV3
        scale: 0.5
        model_name: large
        disable_se: True
      Neck:
        name: DBFPN
        out_channels: 96
      Head:
        name: DBHead
        k: 50


Loss:
  name: CombinedLoss
  loss_config_list:
  - DistillationDMLLoss:
      model_name_pairs:
      - ["Student", "Student2"]
      maps_name: "thrink_maps"
      weight: 1.0
      act: "softmax"
      model_name_pairs: ["Student", "Student2"]
      key: maps
  - DistillationDBLoss:
      weight: 1.0
      model_name_list: ["Student", "Student2"]
      # key: maps
      name: DBLoss
      balance_loss: true
      main_loss_type: DiceLoss
      alpha: 5
      beta: 10
      ohem_ratio: 3


Optimizer:
  name: Adam
  beta1: 0.9
  beta2: 0.999
  lr:
    name: Cosine
    learning_rate: 0.001
    warmup_epoch: 2
  regularizer:
    name: 'L2'
    factor: 0

PostProcess:
  name: DistillationDBPostProcess
  model_name: ["Student", "Student2"]
  key: head_out
  thresh: 0.3
  box_thresh: 0.6
  max_candidates: 1000
  unclip_ratio: 1.5

Metric:
  name: DistillationMetric
  base_metric_name: DetMetric
  main_indicator: hmean
  key: "Student"

Train:
  dataset:
    name: SimpleDataSet
    data_dir: ./train_data/icdar2015/text_localization/
    label_file_list:
      - ./train_data/icdar2015/text_localization/train_icdar2015_label.txt
    ratio_list: [1.0]
    transforms:
      - DecodeImage: # load image
          img_mode: BGR
          channel_first: False
      - DetLabelEncode: # Class handling label
      - IaaAugment:
          augmenter_args:
            - { 'type': Fliplr, 'args': { 'p': 0.5 } }
            - { 'type': Affine, 'args': { 'rotate': [-10, 10] } }
            - { 'type': Resize, 'args': { 'size': [0.5, 3] } }
      - EastRandomCropData:
          size: [960, 960]
          max_tries: 50
          keep_ratio: true
      - MakeBorderMap:
          shrink_ratio: 0.4
          thresh_min: 0.3
          thresh_max: 0.7
      - MakeShrinkMap:
          shrink_ratio: 0.4
          min_text_size: 8
      - NormalizeImage:
          scale: 1./255.
          mean: [0.485, 0.456, 0.406]
          std: [0.229, 0.224, 0.225]
          order: 'hwc'
      - ToCHWImage:
      - KeepKeys:
          keep_keys: ['image', 'threshold_map', 'threshold_mask', 'shrink_map', 'shrink_mask'] # the order of the dataloader list
  loader:
    shuffle: True
    drop_last: False
    batch_size_per_card: 8
    num_workers: 4

Eval:
  dataset:
    name: SimpleDataSet
    data_dir: ./train_data/icdar2015/text_localization/
    label_file_list:
      - ./train_data/icdar2015/text_localization/test_icdar2015_label.txt
    transforms:
      - DecodeImage: # load image
          img_mode: BGR
          channel_first: False
      - DetLabelEncode: # Class handling label
      - DetResizeForTest:
#           image_shape: [736, 1280]
      - NormalizeImage:
          scale: 1./255.
          mean: [0.485, 0.456, 0.406]
          std: [0.229, 0.224, 0.225]
          order: 'hwc'
      - ToCHWImage:
      - KeepKeys:
          keep_keys: ['image', 'shape', 'polys', 'ignore_tags']
  loader:
    shuffle: False
    drop_last: False
    batch_size_per_card: 1 # must be 1
    num_workers: 2