algorithm_det_psenet_en.md 4.3 KB
Newer Older
文幕地方's avatar
文幕地方 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
# PSENet

- [1. Introduction](#1)
- [2. Environment](#2)
- [3. Model Training / Evaluation / Prediction](#3)
    - [3.1 Training](#3-1)
    - [3.2 Evaluation](#3-2)
    - [3.3 Prediction](#3-3)
- [4. Inference and Deployment](#4)
    - [4.1 Python Inference](#4-1)
    - [4.2 C++ Inference](#4-2)
    - [4.3 Serving](#4-3)
    - [4.4 More](#4-4)
- [5. FAQ](#5)

<a name="1"></a>
## 1. Introduction

Paper:
> [Shape robust text detection with progressive scale expansion network](https://arxiv.org/abs/1903.12473)
> Wang, Wenhai and Xie, Enze and Li, Xiang and Hou, Wenbo and Lu, Tong and Yu, Gang and Shao, Shuai
> CVPR, 2019

On the ICDAR2015 dataset, the text detection result is as follows:

|Model|Backbone|Configuration|Precision|Recall|Hmean|Download|
| --- | --- | --- | --- | --- | --- | --- |
|PSE| ResNet50_vd | [configs/det/det_r50_vd_pse.yml](../../configs/det/det_r50_vd_pse.yml)| 85.81%    |79.53%|82.55%|[trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.1/en_det/det_r50_vd_pse_v2.0_train.tar)|
|PSE| MobileNetV3| [configs/det/det_mv3_pse.yml](../../configs/det/det_mv3_pse.yml) | 82.20%    |70.48%|75.89%|[trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.1/en_det/det_mv3_pse_v2.0_train.tar)|


<a name="2"></a>
## 2. Environment
Please prepare your environment referring to [prepare the environment](./environment_en.md) and [clone the repo](./clone_en.md).


<a name="3"></a>
## 3. Model Training / Evaluation / Prediction

文幕地方's avatar
文幕地方 已提交
40
The above PSE model is trained using the ICDAR2015 text detection public dataset. For the download of the dataset, please refer to [ocr_datasets](./dataset/ocr_datasets_en.md).
文幕地方's avatar
文幕地方 已提交
41

M
MissPenguin 已提交
42
After the data download is complete, please refer to [Text Detection Training Tutorial](./detection_en.md) for training. PaddleOCR has modularized the code structure, so that you only need to **replace the configuration file** to train different detection models.
文幕地方's avatar
文幕地方 已提交
43 44 45 46 47 48 49 50 51 52 53 54

<a name="4"></a>
## 4. Inference and Deployment

<a name="4-1"></a>
### 4.1 Python Inference
First, convert the model saved in the PSE text detection training process into an inference model. Taking the model based on the Resnet50_vd backbone network and trained on the ICDAR2015 English dataset as example ([model download link](https://paddleocr.bj.bcebos.com/dygraph_v2.1/en_det/det_r50_vd_pse_v2.0_train.tar)), you can use the following command to convert:

```shell
python3 tools/export_model.py -c configs/det/det_r50_vd_pse.yml -o Global.pretrained_model=./det_r50_vd_pse_v2.0_train/best_accuracy  Global.save_inference_dir=./inference/det_pse
```

文幕地方's avatar
文幕地方 已提交
55
PSE text detection model inference, to perform non-curved text detection, you can run the following commands:
文幕地方's avatar
文幕地方 已提交
56 57

```shell
文幕地方's avatar
文幕地方 已提交
58
python3 tools/infer/predict_det.py --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_pse/" --det_algorithm="PSE" --det_pse_box_type=quad
文幕地方's avatar
文幕地方 已提交
59 60 61 62 63 64
```

The visualized text detection results are saved to the `./inference_results` folder by default, and the name of the result file is prefixed with 'det_res'. Examples of results are as follows:

![](../imgs_results/det_res_img_10_pse.jpg)

文幕地方's avatar
文幕地方 已提交
65 66 67 68 69 70 71 72 73 74 75
If you want to perform curved text detection, you can execute the following command:

```shell
python3 tools/infer/predict_det.py --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_pse/" --det_algorithm="PSE" --det_pse_box_type=poly
```

The visualized text detection results are saved to the `./inference_results` folder by default, and the name of the result file is prefixed with 'det_res'. Examples of results are as follows:

![](../imgs_results/det_res_img_10_pse_poly.jpg)

**Note**: Since the ICDAR2015 dataset has only 1,000 training images, mainly for English scenes, the above model has very poor detection result on Chinese or curved text images.
文幕地方's avatar
文幕地方 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107


<a name="4-2"></a>
### 4.2 C++ Inference

Since the post-processing is not written in CPP, the PSE text detection model does not support CPP inference.

<a name="4-3"></a>
### 4.3 Serving

Not supported

<a name="4-4"></a>
### 4.4 More

Not supported

<a name="5"></a>
## 5. FAQ


## Citation

```bibtex
@inproceedings{wang2019shape,
  title={Shape robust text detection with progressive scale expansion network},
  author={Wang, Wenhai and Xie, Enze and Li, Xiang and Hou, Wenbo and Lu, Tong and Yu, Gang and Shao, Shuai},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={9336--9345},
  year={2019}
}
```