Deteval.py 19.9 KB
Newer Older
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
J
Jethong 已提交
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

J
Jethong 已提交
15
import numpy as np
J
Jethong 已提交
16
import scipy.io as io
J
Jethong 已提交
17 18 19
from ppocr.utils.e2e_metric.polygon_fast import iod, area_of_intersection, area


J
Jethong 已提交
20
def get_socre(gt_dir, img_id, pred_dict):
J
Jethong 已提交
21 22
    allInputs = 1

23
    def input_reading_mod(pred_dict):
J
Jethong 已提交
24 25 26 27 28
        """This helper reads input from txt files"""
        det = []
        n = len(pred_dict)
        for i in range(n):
            points = pred_dict[i]['points']
J
Jethong 已提交
29
            text = pred_dict[i]['texts']
J
Jethong 已提交
30 31 32 33
            point = ",".join(map(str, points.reshape(-1, )))
            det.append([point, text])
        return det

J
Jethong 已提交
34 35 36
    def gt_reading_mod(gt_dir, gt_id):
        gt = io.loadmat('%s/poly_gt_img%s.mat' % (gt_dir, gt_id))
        gt = gt['polygt']
J
Jethong 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
        return gt

    def detection_filtering(detections, groundtruths, threshold=0.5):
        for gt_id, gt in enumerate(groundtruths):
            if (gt[5] == '#') and (gt[1].shape[1] > 1):
                gt_x = list(map(int, np.squeeze(gt[1])))
                gt_y = list(map(int, np.squeeze(gt[3])))
                for det_id, detection in enumerate(detections):
                    detection_orig = detection
                    detection = [float(x) for x in detection[0].split(',')]
                    detection = list(map(int, detection))
                    det_x = detection[0::2]
                    det_y = detection[1::2]
                    det_gt_iou = iod(det_x, det_y, gt_x, gt_y)
                    if det_gt_iou > threshold:
                        detections[det_id] = []

                detections[:] = [item for item in detections if item != []]
        return detections

    def sigma_calculation(det_x, det_y, gt_x, gt_y):
        """
        sigma = inter_area / gt_area
        """
        return np.round((area_of_intersection(det_x, det_y, gt_x, gt_y) /
                         area(gt_x, gt_y)), 2)

    def tau_calculation(det_x, det_y, gt_x, gt_y):
        if area(det_x, det_y) == 0.0:
            return 0
        return np.round((area_of_intersection(det_x, det_y, gt_x, gt_y) /
                         area(det_x, det_y)), 2)

    ##############################Initialization###################################
J
Jethong 已提交
71 72 73 74
    # global_sigma = []
    # global_tau = []
    # global_pred_str = []
    # global_gt_str = []
J
Jethong 已提交
75 76 77 78 79 80 81
    ###############################################################################

    for input_id in range(allInputs):
        if (input_id != '.DS_Store') and (input_id != 'Pascal_result.txt') and (
                input_id != 'Pascal_result_curved.txt') and (input_id != 'Pascal_result_non_curved.txt') and (
                input_id != 'Deteval_result.txt') and (input_id != 'Deteval_result_curved.txt') \
                and (input_id != 'Deteval_result_non_curved.txt'):
82
            detections = input_reading_mod(pred_dict)
J
Jethong 已提交
83
            groundtruths = gt_reading_mod(gt_dir, img_id).tolist()
J
Jethong 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
            detections = detection_filtering(
                detections,
                groundtruths)  # filters detections overlapping with DC area
            dc_id = []
            for i in range(len(groundtruths)):
                if groundtruths[i][5] == '#':
                    dc_id.append(i)
            cnt = 0
            for a in dc_id:
                num = a - cnt
                del groundtruths[num]
                cnt += 1

            local_sigma_table = np.zeros((len(groundtruths), len(detections)))
            local_tau_table = np.zeros((len(groundtruths), len(detections)))
            local_pred_str = {}
            local_gt_str = {}

            for gt_id, gt in enumerate(groundtruths):
                if len(detections) > 0:
                    for det_id, detection in enumerate(detections):
                        detection_orig = detection
                        detection = [float(x) for x in detection[0].split(',')]
                        detection = list(map(int, detection))
                        pred_seq_str = detection_orig[1].strip()
                        det_x = detection[0::2]
                        det_y = detection[1::2]
                        gt_x = list(map(int, np.squeeze(gt[1])))
                        gt_y = list(map(int, np.squeeze(gt[3])))
                        gt_seq_str = str(gt[4].tolist()[0])

                        local_sigma_table[gt_id, det_id] = sigma_calculation(
                            det_x, det_y, gt_x, gt_y)
                        local_tau_table[gt_id, det_id] = tau_calculation(
                            det_x, det_y, gt_x, gt_y)
                        local_pred_str[det_id] = pred_seq_str
                        local_gt_str[gt_id] = gt_seq_str

J
Jethong 已提交
122 123 124 125
            global_sigma = local_sigma_table
            global_tau = local_tau_table
            global_pred_str = local_pred_str
            global_gt_str = local_gt_str
J
Jethong 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144

    single_data = {}
    single_data['sigma'] = global_sigma
    single_data['global_tau'] = global_tau
    single_data['global_pred_str'] = global_pred_str
    single_data['global_gt_str'] = global_gt_str
    return single_data


def combine_results(all_data):
    tr = 0.7
    tp = 0.6
    fsc_k = 0.8
    k = 2
    global_sigma = []
    global_tau = []
    global_pred_str = []
    global_gt_str = []
    for data in all_data:
J
Jethong 已提交
145 146 147 148
        global_sigma.append(data['sigma'])
        global_tau.append(data['global_tau'])
        global_pred_str.append(data['global_pred_str'])
        global_gt_str.append(data['global_gt_str'])
J
Jethong 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330

    global_accumulative_recall = 0
    global_accumulative_precision = 0
    total_num_gt = 0
    total_num_det = 0
    hit_str_count = 0
    hit_count = 0

    def one_to_one(local_sigma_table, local_tau_table,
                   local_accumulative_recall, local_accumulative_precision,
                   global_accumulative_recall, global_accumulative_precision,
                   gt_flag, det_flag, idy):
        hit_str_num = 0
        for gt_id in range(num_gt):
            gt_matching_qualified_sigma_candidates = np.where(
                local_sigma_table[gt_id, :] > tr)
            gt_matching_num_qualified_sigma_candidates = gt_matching_qualified_sigma_candidates[
                0].shape[0]
            gt_matching_qualified_tau_candidates = np.where(
                local_tau_table[gt_id, :] > tp)
            gt_matching_num_qualified_tau_candidates = gt_matching_qualified_tau_candidates[
                0].shape[0]

            det_matching_qualified_sigma_candidates = np.where(
                local_sigma_table[:, gt_matching_qualified_sigma_candidates[0]]
                > tr)
            det_matching_num_qualified_sigma_candidates = det_matching_qualified_sigma_candidates[
                0].shape[0]
            det_matching_qualified_tau_candidates = np.where(
                local_tau_table[:, gt_matching_qualified_tau_candidates[0]] >
                tp)
            det_matching_num_qualified_tau_candidates = det_matching_qualified_tau_candidates[
                0].shape[0]

            if (gt_matching_num_qualified_sigma_candidates == 1) and (gt_matching_num_qualified_tau_candidates == 1) and \
                    (det_matching_num_qualified_sigma_candidates == 1) and (
                    det_matching_num_qualified_tau_candidates == 1):
                global_accumulative_recall = global_accumulative_recall + 1.0
                global_accumulative_precision = global_accumulative_precision + 1.0
                local_accumulative_recall = local_accumulative_recall + 1.0
                local_accumulative_precision = local_accumulative_precision + 1.0

                gt_flag[0, gt_id] = 1
                matched_det_id = np.where(local_sigma_table[gt_id, :] > tr)
                # recg start
                gt_str_cur = global_gt_str[idy][gt_id]
                pred_str_cur = global_pred_str[idy][matched_det_id[0].tolist()[
                    0]]
                if pred_str_cur == gt_str_cur:
                    hit_str_num += 1
                else:
                    if pred_str_cur.lower() == gt_str_cur.lower():
                        hit_str_num += 1
                # recg end
                det_flag[0, matched_det_id] = 1
        return local_accumulative_recall, local_accumulative_precision, global_accumulative_recall, global_accumulative_precision, gt_flag, det_flag, hit_str_num

    def one_to_many(local_sigma_table, local_tau_table,
                    local_accumulative_recall, local_accumulative_precision,
                    global_accumulative_recall, global_accumulative_precision,
                    gt_flag, det_flag, idy):
        hit_str_num = 0
        for gt_id in range(num_gt):
            # skip the following if the groundtruth was matched
            if gt_flag[0, gt_id] > 0:
                continue

            non_zero_in_sigma = np.where(local_sigma_table[gt_id, :] > 0)
            num_non_zero_in_sigma = non_zero_in_sigma[0].shape[0]

            if num_non_zero_in_sigma >= k:
                ####search for all detections that overlaps with this groundtruth
                qualified_tau_candidates = np.where((local_tau_table[
                    gt_id, :] >= tp) & (det_flag[0, :] == 0))
                num_qualified_tau_candidates = qualified_tau_candidates[
                    0].shape[0]

                if num_qualified_tau_candidates == 1:
                    if ((local_tau_table[gt_id, qualified_tau_candidates] >= tp)
                            and
                        (local_sigma_table[gt_id, qualified_tau_candidates] >=
                         tr)):
                        # became an one-to-one case
                        global_accumulative_recall = global_accumulative_recall + 1.0
                        global_accumulative_precision = global_accumulative_precision + 1.0
                        local_accumulative_recall = local_accumulative_recall + 1.0
                        local_accumulative_precision = local_accumulative_precision + 1.0

                        gt_flag[0, gt_id] = 1
                        det_flag[0, qualified_tau_candidates] = 1
                        # recg start
                        gt_str_cur = global_gt_str[idy][gt_id]
                        pred_str_cur = global_pred_str[idy][
                            qualified_tau_candidates[0].tolist()[0]]
                        if pred_str_cur == gt_str_cur:
                            hit_str_num += 1
                        else:
                            if pred_str_cur.lower() == gt_str_cur.lower():
                                hit_str_num += 1
                        # recg end
                elif (np.sum(local_sigma_table[gt_id, qualified_tau_candidates])
                      >= tr):
                    gt_flag[0, gt_id] = 1
                    det_flag[0, qualified_tau_candidates] = 1
                    # recg start
                    gt_str_cur = global_gt_str[idy][gt_id]
                    pred_str_cur = global_pred_str[idy][
                        qualified_tau_candidates[0].tolist()[0]]
                    if pred_str_cur == gt_str_cur:
                        hit_str_num += 1
                    else:
                        if pred_str_cur.lower() == gt_str_cur.lower():
                            hit_str_num += 1
                    # recg end

                    global_accumulative_recall = global_accumulative_recall + fsc_k
                    global_accumulative_precision = global_accumulative_precision + num_qualified_tau_candidates * fsc_k

                    local_accumulative_recall = local_accumulative_recall + fsc_k
                    local_accumulative_precision = local_accumulative_precision + num_qualified_tau_candidates * fsc_k

        return local_accumulative_recall, local_accumulative_precision, global_accumulative_recall, global_accumulative_precision, gt_flag, det_flag, hit_str_num

    def many_to_one(local_sigma_table, local_tau_table,
                    local_accumulative_recall, local_accumulative_precision,
                    global_accumulative_recall, global_accumulative_precision,
                    gt_flag, det_flag, idy):
        hit_str_num = 0
        for det_id in range(num_det):
            # skip the following if the detection was matched
            if det_flag[0, det_id] > 0:
                continue

            non_zero_in_tau = np.where(local_tau_table[:, det_id] > 0)
            num_non_zero_in_tau = non_zero_in_tau[0].shape[0]

            if num_non_zero_in_tau >= k:
                ####search for all detections that overlaps with this groundtruth
                qualified_sigma_candidates = np.where((
                    local_sigma_table[:, det_id] >= tp) & (gt_flag[0, :] == 0))
                num_qualified_sigma_candidates = qualified_sigma_candidates[
                    0].shape[0]

                if num_qualified_sigma_candidates == 1:
                    if ((local_tau_table[qualified_sigma_candidates, det_id] >=
                         tp) and
                        (local_sigma_table[qualified_sigma_candidates, det_id]
                         >= tr)):
                        # became an one-to-one case
                        global_accumulative_recall = global_accumulative_recall + 1.0
                        global_accumulative_precision = global_accumulative_precision + 1.0
                        local_accumulative_recall = local_accumulative_recall + 1.0
                        local_accumulative_precision = local_accumulative_precision + 1.0

                        gt_flag[0, qualified_sigma_candidates] = 1
                        det_flag[0, det_id] = 1
                        # recg start
                        pred_str_cur = global_pred_str[idy][det_id]
                        gt_len = len(qualified_sigma_candidates[0])
                        for idx in range(gt_len):
                            ele_gt_id = qualified_sigma_candidates[0].tolist()[
                                idx]
                            if ele_gt_id not in global_gt_str[idy]:
                                continue
                            gt_str_cur = global_gt_str[idy][ele_gt_id]
                            if pred_str_cur == gt_str_cur:
                                hit_str_num += 1
                                break
                            else:
                                if pred_str_cur.lower() == gt_str_cur.lower():
                                    hit_str_num += 1
                                break
                        # recg end
                elif (np.sum(local_tau_table[qualified_sigma_candidates,
                                             det_id]) >= tp):
                    det_flag[0, det_id] = 1
                    gt_flag[0, qualified_sigma_candidates] = 1
                    # recg start
                    pred_str_cur = global_pred_str[idy][det_id]
                    gt_len = len(qualified_sigma_candidates[0])
                    for idx in range(gt_len):
                        ele_gt_id = qualified_sigma_candidates[0].tolist()[idx]
331
                        if ele_gt_id not in global_gt_str[idy]:
J
Jethong 已提交
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
                            continue
                        gt_str_cur = global_gt_str[idy][ele_gt_id]
                        if pred_str_cur == gt_str_cur:
                            hit_str_num += 1
                            break
                        else:
                            if pred_str_cur.lower() == gt_str_cur.lower():
                                hit_str_num += 1
                                break
                    # recg end

                    global_accumulative_recall = global_accumulative_recall + num_qualified_sigma_candidates * fsc_k
                    global_accumulative_precision = global_accumulative_precision + fsc_k

                    local_accumulative_recall = local_accumulative_recall + num_qualified_sigma_candidates * fsc_k
                    local_accumulative_precision = local_accumulative_precision + fsc_k
        return local_accumulative_recall, local_accumulative_precision, global_accumulative_recall, global_accumulative_precision, gt_flag, det_flag, hit_str_num

    for idx in range(len(global_sigma)):
        local_sigma_table = np.array(global_sigma[idx])
        local_tau_table = global_tau[idx]

        num_gt = local_sigma_table.shape[0]
        num_det = local_sigma_table.shape[1]

        total_num_gt = total_num_gt + num_gt
        total_num_det = total_num_det + num_det

        local_accumulative_recall = 0
        local_accumulative_precision = 0
        gt_flag = np.zeros((1, num_gt))
        det_flag = np.zeros((1, num_det))

        #######first check for one-to-one case##########
        local_accumulative_recall, local_accumulative_precision, global_accumulative_recall, global_accumulative_precision, \
        gt_flag, det_flag, hit_str_num = one_to_one(local_sigma_table, local_tau_table,
                                                    local_accumulative_recall, local_accumulative_precision,
                                                    global_accumulative_recall, global_accumulative_precision,
                                                    gt_flag, det_flag, idx)

        hit_str_count += hit_str_num
        #######then check for one-to-many case##########
        local_accumulative_recall, local_accumulative_precision, global_accumulative_recall, global_accumulative_precision, \
        gt_flag, det_flag, hit_str_num = one_to_many(local_sigma_table, local_tau_table,
                                                     local_accumulative_recall, local_accumulative_precision,
                                                     global_accumulative_recall, global_accumulative_precision,
                                                     gt_flag, det_flag, idx)
        hit_str_count += hit_str_num
        #######then check for many-to-one case##########
        local_accumulative_recall, local_accumulative_precision, global_accumulative_recall, global_accumulative_precision, \
        gt_flag, det_flag, hit_str_num = many_to_one(local_sigma_table, local_tau_table,
                                                     local_accumulative_recall, local_accumulative_precision,
                                                     global_accumulative_recall, global_accumulative_precision,
                                                     gt_flag, det_flag, idx)
J
Jethong 已提交
386 387
        hit_str_count += hit_str_num

J
Jethong 已提交
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
    try:
        recall = global_accumulative_recall / total_num_gt
    except ZeroDivisionError:
        recall = 0

    try:
        precision = global_accumulative_precision / total_num_det
    except ZeroDivisionError:
        precision = 0

    try:
        f_score = 2 * precision * recall / (precision + recall)
    except ZeroDivisionError:
        f_score = 0

    try:
        seqerr = 1 - float(hit_str_count) / global_accumulative_recall
    except ZeroDivisionError:
        seqerr = 1

    try:
        recall_e2e = float(hit_str_count) / total_num_gt
    except ZeroDivisionError:
        recall_e2e = 0

    try:
        precision_e2e = float(hit_str_count) / total_num_det
    except ZeroDivisionError:
        precision_e2e = 0

    try:
        f_score_e2e = 2 * precision_e2e * recall_e2e / (
            precision_e2e + recall_e2e)
    except ZeroDivisionError:
        f_score_e2e = 0

    final = {
        'total_num_gt': total_num_gt,
        'total_num_det': total_num_det,
        'global_accumulative_recall': global_accumulative_recall,
        'hit_str_count': hit_str_count,
        'recall': recall,
        'precision': precision,
        'f_score': f_score,
        'seqerr': seqerr,
        'recall_e2e': recall_e2e,
        'precision_e2e': precision_e2e,
        'f_score_e2e': f_score_e2e
    }
    return final