README_en.md 14.8 KB
Newer Older
1 2
English | [简体中文](README.md)

3 4 5 6
## Introduction
PaddleOCR aims to create a rich, leading, and practical OCR tools that help users train better models and apply them into practice.

**Recent updates**
7
- 2020.6.8 Add [dataset](./doc/doc_en/datasets_en.md) and keep updating
8 9 10 11
- 2020.6.5 Support exporting `attention` model to `inference_model`
- 2020.6.5 Support separate prediction and recognition, output result score
- 2020.5.30 Provide ultra-lightweight Chinese OCR online experience
- 2020.5.30 Model prediction and training supported on Windows system
12
- [more](./doc/doc_en/update_en.md)
X
xxxpsyduck 已提交
13

14 15 16 17 18 19
## Features
- Ultra-lightweight Chinese OCR model, total model size is only 8.6M
    - Single model supports Chinese and English numbers combination recognition, vertical text recognition, long text recognition
    - Detection model DB (4.1M) + recognition model CRNN (4.5M)
- Various text detection algorithms: EAST, DB
- Various text recognition algorithms: Rosetta, CRNN, STAR-Net, RARE
X
xxxpsyduck 已提交
20

21
### Supported Chinese models list:
X
xxxpsyduck 已提交
22

23
|Model Name|Description |Detection Model link|Recognition Model link|
X
xxxpsyduck 已提交
24
|-|-|-|-|
25 26
|chinese_db_crnn_mobile|Ultra-lightweight Chinese OCR model|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db_infer.tar) & [pre-trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db.tar)|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_infer.tar) & [pre-trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn.tar)|
|chinese_db_crnn_server|General Chinese OCR model|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db_infer.tar) & [pre-trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db.tar)|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_infer.tar) & [pre-trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn.tar)|
X
xxxpsyduck 已提交
27 28


29
For testing our Chinese OCR online:https://www.paddlepaddle.org.cn/hub/scene/ocr
X
xxxpsyduck 已提交
30

31
**You can also quickly experience the Ultra-lightweight Chinese OCR and General Chinese OCR models as follows:**
X
xxxpsyduck 已提交
32

33
## **Ultra-lightweight Chinese OCR and General Chinese OCR inference**
X
xxxpsyduck 已提交
34

35
![](doc/imgs_results/11.jpg)
X
xxxpsyduck 已提交
36

37
The picture above is the result of our Ultra-lightweight Chinese OCR model. For more testing results, please see the end of the article [Ultra-lightweight Chinese OCR results](#Ultra-lightweight-Chinese-OCR-results) and [General Chinese OCR results](#General-Chinese-OCR-results).
X
xxxpsyduck 已提交
38

39
#### 1. Environment configuration
X
xxxpsyduck 已提交
40

41
Please see [Quick installation](./doc/doc_en/installation_en.md)
X
xxxpsyduck 已提交
42

43
#### 2. Download inference models
X
xxxpsyduck 已提交
44

45 46
#### (1) Download Ultra-lightweight Chinese OCR models
*If wget is not installed in the windows system, you can copy the link to the browser to download the model. After model downloaded, unzip it and place it in the corresponding directory*
X
xxxpsyduck 已提交
47 48 49

```
mkdir inference && cd inference
50
# Download the detection part of the Ultra-lightweight Chinese OCR and decompress it
X
xxxpsyduck 已提交
51
wget https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db_infer.tar && tar xf ch_det_mv3_db_infer.tar
52
# Download the recognition part of the Ultra-lightweight Chinese OCR and decompress it
X
xxxpsyduck 已提交
53 54 55
wget https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_infer.tar && tar xf ch_rec_mv3_crnn_infer.tar
cd ..
```
56
#### (2) Download General Chinese OCR models
X
xxxpsyduck 已提交
57 58
```
mkdir inference && cd inference
59
# Download the detection part of the general Chinese OCR model and decompress it
X
xxxpsyduck 已提交
60
wget https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db_infer.tar && tar xf ch_det_r50_vd_db_infer.tar
61
# Download the recognition part of the generic Chinese OCR model and decompress it
X
xxxpsyduck 已提交
62 63 64 65
wget https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_infer.tar && tar xf ch_rec_r34_vd_crnn_infer.tar
cd ..
```

66
#### 3. Single image and batch image prediction
X
xxxpsyduck 已提交
67

68
The following code implements text detection and recognition inference tandemly. When performing prediction, you need to specify the path of a single image or image folder through the parameter `image_dir`, the parameter `det_model_dir` specifies the path to detection model, and the parameter `rec_model_dir` specifies the path to the recognition model. The visual prediction results are saved to the `./inference_results` folder by default.
X
xxxpsyduck 已提交
69 70

```
71
# Set PYTHONPATH environment variable
X
xxxpsyduck 已提交
72 73
export PYTHONPATH=.

74
# Setting environment variable in Windows
X
xxxpsyduck 已提交
75 76
SET PYTHONPATH=.

77
# Prediction on a single image by specifying image path to image_dir
X
xxxpsyduck 已提交
78 79
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_det_mv3_db/"  --rec_model_dir="./inference/ch_rec_mv3_crnn/"

80
# Prediction on a batch of images by specifying image folder path to image_dir
X
xxxpsyduck 已提交
81 82
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/" --det_model_dir="./inference/ch_det_mv3_db/"  --rec_model_dir="./inference/ch_rec_mv3_crnn/"

83
# If you want to use CPU for prediction, you need to set the use_gpu parameter to False
X
xxxpsyduck 已提交
84 85 86
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_det_mv3_db/"  --rec_model_dir="./inference/ch_rec_mv3_crnn/" --use_gpu=False
```

87
To run inference of the Generic Chinese OCR model, follow these steps above to download the corresponding models and update the relevant parameters. Examples are as follows:
X
xxxpsyduck 已提交
88
```
89
# Prediction on a single image by specifying image path to image_dir
X
xxxpsyduck 已提交
90 91 92
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_det_r50_vd_db/"  --rec_model_dir="./inference/ch_rec_r34_vd_crnn/"
```

93
For more text detection and recognition models, please refer to the document [Inference](./doc/doc_en/inference_en.md)
X
xxxpsyduck 已提交
94

L
LDOUBLEV 已提交
95
## Documentation
96 97 98 99 100
- [Quick installation](./doc/doc_en/installation_en.md)
- [Text detection model training/evaluation/prediction](./doc/doc_en/detection_en.md)
- [Text recognition model training/evaluation/prediction](./doc/doc_en/recognition_en.md)
- [Inference](./doc/doc_en/inference_en.md)
- [Dataset](./doc/doc_en/datasets_en.md)
X
xxxpsyduck 已提交
101

102
## Text detection algorithm
X
xxxpsyduck 已提交
103

104
PaddleOCR open source text detection algorithms list:
X
xxxpsyduck 已提交
105 106
- [x]  EAST([paper](https://arxiv.org/abs/1704.03155))
- [x]  DB([paper](https://arxiv.org/abs/1911.08947))
107
- [ ]  SAST([paper](https://arxiv.org/abs/1908.05498))(Baidu Self-Research, comming soon)
X
xxxpsyduck 已提交
108

109
On the ICDAR2015 dataset, the text detection result is as follows:
X
xxxpsyduck 已提交
110

111
|Model|Backbone|precision|recall|Hmean|Download link|
X
xxxpsyduck 已提交
112
|-|-|-|-|-|-|
113 114 115 116
|EAST|ResNet50_vd|88.18%|85.51%|86.82%|[Download link](https://paddleocr.bj.bcebos.com/det_r50_vd_east.tar)|
|EAST|MobileNetV3|81.67%|79.83%|80.74%|[Download link](https://paddleocr.bj.bcebos.com/det_mv3_east.tar)|
|DB|ResNet50_vd|83.79%|80.65%|82.19%|[Download link](https://paddleocr.bj.bcebos.com/det_r50_vd_db.tar)|
|DB|MobileNetV3|75.92%|73.18%|74.53%|[Download link](https://paddleocr.bj.bcebos.com/det_mv3_db.tar)|
X
xxxpsyduck 已提交
117

M
MissPenguin 已提交
118
For use of [LSVT](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/doc_en/datasets_en.md#1-icdar2019-lsvt) street view dataset with a total of 3w training data,the related configuration and pre-trained models for Chinese detection task are as follows:
119
|Model|Backbone|Configuration file|Pre-trained model|
X
xxxpsyduck 已提交
120
|-|-|-|-|
121 122
|Ultra-lightweight Chinese model|MobileNetV3|det_mv3_db.yml|[Download link](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db.tar)|
|General Chinese OCR model|ResNet50_vd|det_r50_vd_db.yml|[Download link](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db.tar)|
X
xxxpsyduck 已提交
123

124
* Note: For the training and evaluation of the above DB model, post-processing parameters box_thresh=0.6 and unclip_ratio=1.5 need to be set. If using different datasets and different models for training, these two parameters can be adjusted for better result.
X
xxxpsyduck 已提交
125

M
MissPenguin 已提交
126
For the training guide and use of PaddleOCR text detection algorithms, please refer to the document [Text detection model training/evaluation/prediction](./doc/doc_en/detection_en.)
X
xxxpsyduck 已提交
127

128
## Text recognition algorithm
X
xxxpsyduck 已提交
129

130
PaddleOCR open-source text recognition algorithms list:
X
xxxpsyduck 已提交
131 132 133 134
- [x]  CRNN([paper](https://arxiv.org/abs/1507.05717))
- [x]  Rosetta([paper](https://arxiv.org/abs/1910.05085))
- [x]  STAR-Net([paper](http://www.bmva.org/bmvc/2016/papers/paper043/index.html))
- [x]  RARE([paper](https://arxiv.org/abs/1603.03915v1))
135
- [ ]  SRN([paper](https://arxiv.org/abs/2003.12294))(Baidu Self-Research, comming soon)
X
xxxpsyduck 已提交
136

137
Refer to [DTRB](https://arxiv.org/abs/1904.01906), the training and evaluation result of these above text recognition (using MJSynth and SynthText for training, evaluate on IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE) is as follow:
X
xxxpsyduck 已提交
138

139
|Model|Backbone|Avg Accuracy|Module combination|Download link|
X
xxxpsyduck 已提交
140
|-|-|-|-|-|
141 142 143 144 145 146 147 148 149
|Rosetta|Resnet34_vd|80.24%|rec_r34_vd_none_none_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_r34_vd_none_none_ctc.tar)|
|Rosetta|MobileNetV3|78.16%|rec_mv3_none_none_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_mv3_none_none_ctc.tar)|
|CRNN|Resnet34_vd|82.20%|rec_r34_vd_none_bilstm_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_r34_vd_none_bilstm_ctc.tar)|
|CRNN|MobileNetV3|79.37%|rec_mv3_none_bilstm_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_mv3_none_bilstm_ctc.tar)|
|STAR-Net|Resnet34_vd|83.93%|rec_r34_vd_tps_bilstm_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_r34_vd_tps_bilstm_ctc.tar)|
|STAR-Net|MobileNetV3|81.56%|rec_mv3_tps_bilstm_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_mv3_tps_bilstm_ctc.tar)|
|RARE|Resnet34_vd|84.90%|rec_r34_vd_tps_bilstm_attn|[Download link](https://paddleocr.bj.bcebos.com/rec_r34_vd_tps_bilstm_attn.tar)|
|RARE|MobileNetV3|83.32%|rec_mv3_tps_bilstm_attn|[Download link](https://paddleocr.bj.bcebos.com/rec_mv3_tps_bilstm_attn.tar)|

M
MissPenguin 已提交
150
We use [LSVT](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/doc_en/datasets_en.md#1-icdar2019-lsvt) dataset and cropout 30w  traning data from original photos by using position groundtruth and make some calibration needed. In addition, based on the LSVT corpus, 500w synthetic data is generated to train the Chinese model. The related configuration and pre-trained models are as follows:
151
|Model|Backbone|Configuration file|Pre-trained model|
X
xxxpsyduck 已提交
152
|-|-|-|-|
153 154
|Ultra-lightweight Chinese model|MobileNetV3|rec_chinese_lite_train.yml|[Download link](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn.tar)|
|General Chinese OCR model|Resnet34_vd|rec_chinese_common_train.yml|[Download link](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn.tar)|
X
xxxpsyduck 已提交
155

M
MissPenguin 已提交
156
Please refer to the document for training guide and use of PaddleOCR text recognition algorithms [Text recognition model training/evaluation/prediction](./doc/doc_en/recognition_en.md)
X
xxxpsyduck 已提交
157

158 159
## End-to-end OCR algorithm
- [ ]  [End2End-PSL](https://arxiv.org/abs/1909.07808)(Baidu Self-Research, comming soon)
X
xxxpsyduck 已提交
160

161 162
<a name="Ultra-lightweight Chinese OCR results"></a>
## Ultra-lightweight Chinese OCR results
X
xxxpsyduck 已提交
163 164 165 166 167 168 169 170 171
![](doc/imgs_results/1.jpg)
![](doc/imgs_results/7.jpg)
![](doc/imgs_results/12.jpg)
![](doc/imgs_results/4.jpg)
![](doc/imgs_results/6.jpg)
![](doc/imgs_results/9.jpg)
![](doc/imgs_results/16.png)
![](doc/imgs_results/22.jpg)

172 173
<a name="General Chinese OCR results"></a>
## General Chinese OCR results
X
xxxpsyduck 已提交
174 175 176 177 178
![](doc/imgs_results/chinese_db_crnn_server/11.jpg)
![](doc/imgs_results/chinese_db_crnn_server/2.jpg)
![](doc/imgs_results/chinese_db_crnn_server/8.jpg)

## FAQ
179
1. Prediction error:got an unexpected keyword argument 'gradient_clip'
X
xxxpsyduck 已提交
180

181
    The installed paddle version is not correct. At present, this project only supports paddle1.7, which will be adapted to 1.8 in the near future.
L
LDOUBLEV 已提交
182

183
2. Error when using attention-based recognition model: KeyError: 'predict'
X
xxxpsyduck 已提交
184

185
    The inference of recognition model based on attention loss is still being debugged. For Chinese text recognition, it is recommended to choose the recognition model based on CTC loss first. In practice, it is also found that the recognition model based on attention loss is not as effective as the one based on CTC loss.
L
LDOUBLEV 已提交
186

187
3. About inference speed
X
xxxpsyduck 已提交
188

189
    When there are a lot of texts in the picture, the prediction time will increase. You can use `--rec_batch_num` to set a smaller prediction batch size. The default value is 30, which can be changed to 10 or other values.
X
xxxpsyduck 已提交
190

191
4. Service deployment and mobile deployment
X
xxxpsyduck 已提交
192

193
    It is expected that the service deployment based on Serving and the mobile deployment based on Paddle Lite will be released successively in mid-to-late June. Stay tuned for more updates.
L
LDOUBLEV 已提交
194

195 196 197
5. Release time of self-developed algorithm

    Baidu Self-developed algorithms such as SAST, SRN and end2end PSL will be released in June or July. Please be patient.
L
LDOUBLEV 已提交
198

199
[more](./doc/doc_en/FAQ_en.md)
X
xxxpsyduck 已提交
200

201
## Welcome to the PaddleOCR technical exchange group
202
WeChat: paddlehelp . remarks OCR, the assistant will invite you to join the group~
203

X
xxxpsyduck 已提交
204

205
## References
X
xxxpsyduck 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
```
1. EAST:
@inproceedings{zhou2017east,
  title={EAST: an efficient and accurate scene text detector},
  author={Zhou, Xinyu and Yao, Cong and Wen, He and Wang, Yuzhi and Zhou, Shuchang and He, Weiran and Liang, Jiajun},
  booktitle={Proceedings of the IEEE conference on Computer Vision and Pattern Recognition},
  pages={5551--5560},
  year={2017}
}

2. DB:
@article{liao2019real,
  title={Real-time Scene Text Detection with Differentiable Binarization},
  author={Liao, Minghui and Wan, Zhaoyi and Yao, Cong and Chen, Kai and Bai, Xiang},
  journal={arXiv preprint arXiv:1911.08947},
  year={2019}
}

3. DTRB:
@inproceedings{baek2019wrong,
  title={What is wrong with scene text recognition model comparisons? dataset and model analysis},
  author={Baek, Jeonghun and Kim, Geewook and Lee, Junyeop and Park, Sungrae and Han, Dongyoon and Yun, Sangdoo and Oh, Seong Joon and Lee, Hwalsuk},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  pages={4715--4723},
  year={2019}
}

4. SAST:
@inproceedings{wang2019single,
  title={A Single-Shot Arbitrarily-Shaped Text Detector based on Context Attended Multi-Task Learning},
  author={Wang, Pengfei and Zhang, Chengquan and Qi, Fei and Huang, Zuming and En, Mengyi and Han, Junyu and Liu, Jingtuo and Ding, Errui and Shi, Guangming},
  booktitle={Proceedings of the 27th ACM International Conference on Multimedia},
  pages={1277--1285},
  year={2019}
}

5. SRN:
@article{yu2020towards,
  title={Towards Accurate Scene Text Recognition with Semantic Reasoning Networks},
  author={Yu, Deli and Li, Xuan and Zhang, Chengquan and Han, Junyu and Liu, Jingtuo and Ding, Errui},
  journal={arXiv preprint arXiv:2003.12294},
  year={2020}
}

6. end2end-psl:
@inproceedings{sun2019chinese,
  title={Chinese Street View Text: Large-scale Chinese Text Reading with Partially Supervised Learning},
  author={Sun, Yipeng and Liu, Jiaming and Liu, Wei and Han, Junyu and Ding, Errui and Liu, Jingtuo},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  pages={9086--9095},
  year={2019}
}
```

260 261
## License
This project is released under <a href="https://github.com/PaddlePaddle/PaddleOCR/blob/master/LICENSE">Apache 2.0 license</a>
X
xxxpsyduck 已提交
262

263 264
## Contribution
We welcome all the contributions to PaddleOCR and appreciate for your feedback very much.