predict_cls.py 6.2 KB
Newer Older
W
WenmuZhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))

L
LDOUBLEV 已提交
21 22
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'

W
WenmuZhou 已提交
23 24 25 26 27
import cv2
import copy
import numpy as np
import math
import time
W
WenmuZhou 已提交
28
import traceback
W
WenmuZhou 已提交
29 30 31 32 33 34

import tools.infer.utility as utility
from ppocr.postprocess import build_post_process
from ppocr.utils.logging import get_logger
from ppocr.utils.utility import get_image_file_list, check_and_read_gif

W
WenmuZhou 已提交
35 36
logger = get_logger()

W
WenmuZhou 已提交
37 38 39 40

class TextClassifier(object):
    def __init__(self, args):
        self.cls_image_shape = [int(v) for v in args.cls_image_shape.split(",")]
41
        self.cls_batch_num = args.cls_batch_num
W
WenmuZhou 已提交
42 43 44 45 46 47
        self.cls_thresh = args.cls_thresh
        postprocess_params = {
            'name': 'ClsPostProcess',
            "label_list": args.label_list,
        }
        self.postprocess_op = build_post_process(postprocess_params)
L
LDOUBLEV 已提交
48
        self.predictor, self.input_tensor, self.output_tensors, _ = \
W
WenmuZhou 已提交
49 50
            utility.create_predictor(args, 'cls', logger)

L
LDOUBLEV 已提交
51 52
        self.cls_times = utility.Timer()

W
WenmuZhou 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
    def resize_norm_img(self, img):
        imgC, imgH, imgW = self.cls_image_shape
        h = img.shape[0]
        w = img.shape[1]
        ratio = w / float(h)
        if math.ceil(imgH * ratio) > imgW:
            resized_w = imgW
        else:
            resized_w = int(math.ceil(imgH * ratio))
        resized_image = cv2.resize(img, (resized_w, imgH))
        resized_image = resized_image.astype('float32')
        if self.cls_image_shape[0] == 1:
            resized_image = resized_image / 255
            resized_image = resized_image[np.newaxis, :]
        else:
            resized_image = resized_image.transpose((2, 0, 1)) / 255
        resized_image -= 0.5
        resized_image /= 0.5
        padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
        padding_im[:, :, 0:resized_w] = resized_image
        return padding_im

    def __call__(self, img_list):
        img_list = copy.deepcopy(img_list)
        img_num = len(img_list)
        # Calculate the aspect ratio of all text bars
        width_list = []
        for img in img_list:
            width_list.append(img.shape[1] / float(img.shape[0]))
        # Sorting can speed up the cls process
        indices = np.argsort(np.array(width_list))

        cls_res = [['', 0.0]] * img_num
        batch_num = self.cls_batch_num
87
        elapse = 0
L
LDOUBLEV 已提交
88
        self.cls_times.total_time.start()
W
WenmuZhou 已提交
89
        for beg_img_no in range(0, img_num, batch_num):
L
LDOUBLEV 已提交
90

W
WenmuZhou 已提交
91 92 93 94 95 96 97
            end_img_no = min(img_num, beg_img_no + batch_num)
            norm_img_batch = []
            max_wh_ratio = 0
            for ino in range(beg_img_no, end_img_no):
                h, w = img_list[indices[ino]].shape[0:2]
                wh_ratio = w * 1.0 / h
                max_wh_ratio = max(max_wh_ratio, wh_ratio)
L
LDOUBLEV 已提交
98
            self.cls_times.preprocess_time.start()
W
WenmuZhou 已提交
99 100 101 102 103 104 105
            for ino in range(beg_img_no, end_img_no):
                norm_img = self.resize_norm_img(img_list[indices[ino]])
                norm_img = norm_img[np.newaxis, :]
                norm_img_batch.append(norm_img)
            norm_img_batch = np.concatenate(norm_img_batch)
            norm_img_batch = norm_img_batch.copy()
            starttime = time.time()
L
LDOUBLEV 已提交
106 107 108
            self.cls_times.preprocess_time.end()
            self.cls_times.inference_time.start()

W
WenmuZhou 已提交
109 110
            self.input_tensor.copy_from_cpu(norm_img_batch)
            self.predictor.run()
W
WenmuZhou 已提交
111
            prob_out = self.output_tensors[0].copy_to_cpu()
L
LDOUBLEV 已提交
112 113
            self.cls_times.inference_time.end()
            self.cls_times.postprocess_time.start()
W
fix mem  
WenmuZhou 已提交
114
            self.predictor.try_shrink_memory()
W
WenmuZhou 已提交
115
            cls_result = self.postprocess_op(prob_out)
L
LDOUBLEV 已提交
116
            self.cls_times.postprocess_time.end()
117
            elapse += time.time() - starttime
W
WenmuZhou 已提交
118 119
            for rno in range(len(cls_result)):
                label, score = cls_result[rno]
W
WenmuZhou 已提交
120 121 122 123
                cls_res[indices[beg_img_no + rno]] = [label, score]
                if '180' in label and score > self.cls_thresh:
                    img_list[indices[beg_img_no + rno]] = cv2.rotate(
                        img_list[indices[beg_img_no + rno]], 1)
L
LDOUBLEV 已提交
124 125 126
        self.cls_times.total_time.end()
        self.cls_times.img_num += img_num
        elapse = self.cls_times.total_time.value()
127
        return img_list, cls_res, elapse
W
WenmuZhou 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144


def main(args):
    image_file_list = get_image_file_list(args.image_dir)
    text_classifier = TextClassifier(args)
    valid_image_file_list = []
    img_list = []
    for image_file in image_file_list:
        img, flag = check_and_read_gif(image_file)
        if not flag:
            img = cv2.imread(image_file)
        if img is None:
            logger.info("error in loading image:{}".format(image_file))
            continue
        valid_image_file_list.append(image_file)
        img_list.append(img)
    try:
W
WenmuZhou 已提交
145
        img_list, cls_res, predict_time = text_classifier(img_list)
W
WenmuZhou 已提交
146 147
    except:
        logger.info(traceback.format_exc())
W
WenmuZhou 已提交
148 149 150 151 152 153 154 155
        logger.info(
            "ERROR!!!! \n"
            "Please read the FAQ:https://github.com/PaddlePaddle/PaddleOCR#faq \n"
            "If your model has tps module:  "
            "TPS does not support variable shape.\n"
            "Please set --rec_image_shape='3,32,100' and --rec_char_type='en' ")
        exit()
    for ino in range(len(img_list)):
W
WenmuZhou 已提交
156 157
        logger.info("Predicts of {}:{}".format(valid_image_file_list[ino],
                                               cls_res[ino]))
L
LDOUBLEV 已提交
158 159 160
    logger.info(
        "The predict time about text angle classify module is as follows: ")
    text_classifier.cls_times.info(average=False)
W
WenmuZhou 已提交
161

W
WenmuZhou 已提交
162

W
WenmuZhou 已提交
163 164
if __name__ == "__main__":
    main(utility.parse_args())