predict_structure.py 4.6 KB
Newer Older
W
WenmuZhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))

os.environ["FLAGS_allocator_strategy"] = 'auto_growth'

import cv2
import numpy as np
import math
import time
import traceback
import paddle

import tools.infer.utility as utility
from ppocr.data import create_operators, transform
from ppocr.postprocess import build_post_process
from ppocr.utils.logging import get_logger
from ppocr.utils.utility import get_image_file_list, check_and_read_gif

logger = get_logger()


class TableStructurer(object):
    def __init__(self, args):
        pre_process_list = [{
            'ResizeTableImage': {
W
WenmuZhou 已提交
43
                'max_len': args.structure_max_len
W
WenmuZhou 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
            }
        }, {
            'NormalizeImage': {
                'std': [0.229, 0.224, 0.225],
                'mean': [0.485, 0.456, 0.406],
                'scale': '1./255.',
                'order': 'hwc'
            }
        }, {
            'PaddingTableImage': None
        }, {
            'ToCHWImage': None
        }, {
            'KeepKeys': {
                'keep_keys': ['image']
            }
        }]
        postprocess_params = {
            'name': 'TableLabelDecode',
W
WenmuZhou 已提交
63 64 65 66 67
            "character_type": args.structure_char_type,
            "character_dict_path": args.structure_char_dict_path,
            "max_text_length": args.structure_max_text_length,
            "max_elem_length": args.structure_max_elem_length,
            "max_cell_num": args.structure_max_cell_num
W
WenmuZhou 已提交
68 69 70 71 72
        }

        self.preprocess_op = create_operators(pre_process_list)
        self.postprocess_op = build_post_process(postprocess_params)
        self.predictor, self.input_tensor, self.output_tensors = \
W
WenmuZhou 已提交
73
            utility.create_predictor(args, 'structure', logger)
W
WenmuZhou 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141

    def __call__(self, img):
        ori_im = img.copy()
        data = {'image': img}
        data = transform(data, self.preprocess_op)
        img = data[0]
        if img is None:
            return None, 0
        img = np.expand_dims(img, axis=0)
        img = img.copy()
        starttime = time.time()

        self.input_tensor.copy_from_cpu(img)
        self.predictor.run()
        outputs = []
        for output_tensor in self.output_tensors:
            output = output_tensor.copy_to_cpu()
            outputs.append(output)

        preds = {}
        preds['structure_probs'] = outputs[1]
        preds['loc_preds'] = outputs[0]

        post_result = self.postprocess_op(preds)

        structure_str_list = post_result['structure_str_list']
        res_loc = post_result['res_loc']
        imgh, imgw = ori_im.shape[0:2]
        res_loc_final = []
        for rno in range(len(res_loc[0])):
            x0, y0, x1, y1 = res_loc[0][rno]
            left = max(int(imgw * x0), 0)
            top = max(int(imgh * y0), 0)
            right = min(int(imgw * x1), imgw - 1)
            bottom = min(int(imgh * y1), imgh - 1)
            res_loc_final.append([left, top, right, bottom])

        structure_str_list = structure_str_list[0][:-1]
        structure_str_list = ['<html>', '<body>', '<table>'] + structure_str_list + ['</table>', '</body>', '</html>']

        elapse = time.time() - starttime
        return (structure_str_list, res_loc_final), elapse


def main(args):
    image_file_list = get_image_file_list(args.image_dir)
    table_structurer = TableStructurer(args)
    count = 0
    total_time = 0
    for image_file in image_file_list:
        img, flag = check_and_read_gif(image_file)
        if not flag:
            img = cv2.imread(image_file)
        if img is None:
            logger.info("error in loading image:{}".format(image_file))
            continue
        structure_res, elapse = table_structurer(img)

        logger.info("result: {}".format(structure_res))

        if count > 0:
            total_time += elapse
        count += 1
        logger.info("Predict time of {}: {}".format(image_file, elapse))


if __name__ == "__main__":
    main(utility.parse_args())