rec_spin_att_head.py 4.6 KB
Newer Older
xuyang2233's avatar
xuyang2233 已提交
1
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
xuyang2233's avatar
add pr  
xuyang2233 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

xuyang2233's avatar
xuyang2233 已提交
15 16 17 18 19
"""
This code is refer from: 
https://github.com/hikopensource/DAVAR-Lab-OCR/davarocr/davar_rcg/models/sequence_heads/att_head.py
"""

xuyang2233's avatar
add pr  
xuyang2233 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle
import paddle.nn as nn
import paddle.nn.functional as F


class SPINAttentionHead(nn.Layer):
    def __init__(self, in_channels, out_channels, hidden_size, **kwargs):
        super(SPINAttentionHead, self).__init__()
        self.input_size = in_channels
        self.hidden_size = hidden_size
        self.num_classes = out_channels

        self.attention_cell = AttentionLSTMCell(
            in_channels, hidden_size, out_channels, use_gru=False)
        self.generator = nn.Linear(hidden_size, out_channels)

    def _char_to_onehot(self, input_char, onehot_dim):
        input_ont_hot = F.one_hot(input_char, onehot_dim)
        return input_ont_hot

    def forward(self, inputs, targets=None, batch_max_length=25):
        batch_size = paddle.shape(inputs)[0]
        num_steps = batch_max_length + 1 # +1 for [sos] at end of sentence

        hidden = (paddle.zeros((batch_size, self.hidden_size)),
                    paddle.zeros((batch_size, self.hidden_size)))
        output_hiddens = []
        if self.training: # for train
            targets = targets[0]
            for i in range(num_steps):
                char_onehots = self._char_to_onehot(
                    targets[:, i], onehot_dim=self.num_classes)
                (outputs, hidden), alpha = self.attention_cell(hidden, inputs,
                                                               char_onehots)
                output_hiddens.append(paddle.unsqueeze(outputs, axis=1))
            output = paddle.concat(output_hiddens, axis=1)
            probs = self.generator(output)        
        else:
            targets = paddle.zeros(shape=[batch_size], dtype="int32")
            probs = None
            char_onehots = None
            outputs = None
            alpha = None

            for i in range(num_steps):
                char_onehots = self._char_to_onehot(
                    targets, onehot_dim=self.num_classes)
                (outputs, hidden), alpha = self.attention_cell(hidden, inputs,
                                                               char_onehots)
                probs_step = self.generator(outputs)
                if probs is None:
                    probs = paddle.unsqueeze(probs_step, axis=1)
                else:
                    probs = paddle.concat(
                        [probs, paddle.unsqueeze(
                            probs_step, axis=1)], axis=1)
                next_input = probs_step.argmax(axis=1)
                targets = next_input
        if not self.training:
            probs = paddle.nn.functional.softmax(probs, axis=2)
        return probs


class AttentionLSTMCell(nn.Layer):
    def __init__(self, input_size, hidden_size, num_embeddings, use_gru=False):
        super(AttentionLSTMCell, self).__init__()
        self.i2h = nn.Linear(input_size, hidden_size, bias_attr=False)
        self.h2h = nn.Linear(hidden_size, hidden_size)
        self.score = nn.Linear(hidden_size, 1, bias_attr=False)
        if not use_gru:
            self.rnn = nn.LSTMCell(
                input_size=input_size + num_embeddings, hidden_size=hidden_size)
        else:
            self.rnn = nn.GRUCell(
                input_size=input_size + num_embeddings, hidden_size=hidden_size)

        self.hidden_size = hidden_size

    def forward(self, prev_hidden, batch_H, char_onehots):
        batch_H_proj = self.i2h(batch_H)
        prev_hidden_proj = paddle.unsqueeze(self.h2h(prev_hidden[0]), axis=1)
        res = paddle.add(batch_H_proj, prev_hidden_proj)
        res = paddle.tanh(res)
        e = self.score(res)

        alpha = F.softmax(e, axis=1)
        alpha = paddle.transpose(alpha, [0, 2, 1])
        context = paddle.squeeze(paddle.mm(alpha, batch_H), axis=1)
        concat_context = paddle.concat([context, char_onehots], 1)
        cur_hidden = self.rnn(concat_context, prev_hidden)

        return cur_hidden, alpha