utility.py 3.5 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
L
LDOUBLEV 已提交
16
import os
littletomatodonkey's avatar
littletomatodonkey 已提交
17
import imghdr
L
LDOUBLEV 已提交
18
import cv2
L
LDOUBLEV 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60


def initial_logger():
    FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
    logging.basicConfig(level=logging.INFO, format=FORMAT)
    logger = logging.getLogger(__name__)
    return logger


import importlib


def create_module(module_str):
    tmpss = module_str.split(",")
    assert len(tmpss) == 2, "Error formate\
        of the module path: {}".format(module_str)
    module_name, function_name = tmpss[0], tmpss[1]
    somemodule = importlib.import_module(module_name, __package__)
    function = getattr(somemodule, function_name)
    return function


def get_check_global_params(mode):
    check_params = ['use_gpu', 'max_text_length', 'image_shape',\
        'image_shape', 'character_type', 'loss_type']
    if mode == "train_eval":
        check_params = check_params + [\
            'train_batch_size_per_card', 'test_batch_size_per_card']
    elif mode == "test":
        check_params = check_params + ['test_batch_size_per_card']
    return check_params


def get_check_reader_params(mode):
    check_params = []
    if mode == "train_eval":
        check_params = ['TrainReader', 'EvalReader']
    elif mode == "test":
        check_params = ['TestReader']
    return check_params


L
LDOUBLEV 已提交
61 62 63 64 65
def get_image_file_list(img_file):
    imgs_lists = []
    if img_file is None or not os.path.exists(img_file):
        raise Exception("not found any img file in {}".format(img_file))

L
LDOUBLEV 已提交
66
    img_end = {'jpg', 'bmp', 'png', 'jpeg', 'rgb', 'tif', 'tiff', 'gif', 'GIF'}
littletomatodonkey's avatar
littletomatodonkey 已提交
67
    if os.path.isfile(img_file) and imghdr.what(img_file) in img_end:
L
LDOUBLEV 已提交
68 69 70
        imgs_lists.append(img_file)
    elif os.path.isdir(img_file):
        for single_file in os.listdir(img_file):
littletomatodonkey's avatar
littletomatodonkey 已提交
71 72 73
            file_path = os.path.join(img_file, single_file)
            if imghdr.what(file_path) in img_end:
                imgs_lists.append(file_path)
L
LDOUBLEV 已提交
74 75 76 77 78
    if len(imgs_lists) == 0:
        raise Exception("not found any img file in {}".format(img_file))
    return imgs_lists


L
LDOUBLEV 已提交
79 80 81 82 83 84
def check_and_read_gif(img_path):
    if os.path.basename(img_path)[-3:] in ['gif', 'GIF']:
        gif = cv2.VideoCapture(img_path)
        ret, frame = gif.read()
        if not ret:
            logging.info("Cannot read {}. This gif image maybe corrupted.")
L
LDOUBLEV 已提交
85
            return None, False
L
LDOUBLEV 已提交
86 87 88 89 90 91 92
        if len(frame.shape) == 2 or frame.shape[-1] == 1:
            frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB)
        imgvalue = frame[:, :, ::-1]
        return imgvalue, True
    return None, False


L
LDOUBLEV 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106
from paddle import fluid


def create_multi_devices_program(program, loss_var_name):
    build_strategy = fluid.BuildStrategy()
    build_strategy.memory_optimize = False
    build_strategy.enable_inplace = True
    exec_strategy = fluid.ExecutionStrategy()
    exec_strategy.num_iteration_per_drop_scope = 1
    compile_program = fluid.CompiledProgram(program).with_data_parallel(
        loss_name=loss_var_name,
        build_strategy=build_strategy,
        exec_strategy=exec_strategy)
    return compile_program