predict_sr.py 5.5 KB
Newer Older
X
xiaoting 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
from PIL import Image
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.insert(0, __dir__)
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../..')))

os.environ["FLAGS_allocator_strategy"] = 'auto_growth'

import cv2
import numpy as np
import math
import time
import traceback
import paddle

import tools.infer.utility as utility
from ppocr.postprocess import build_post_process
from ppocr.utils.logging import get_logger
from ppocr.utils.utility import get_image_file_list, check_and_read_gif

logger = get_logger()


class TextSR(object):
    def __init__(self, args):
        self.sr_image_shape = [int(v) for v in args.sr_image_shape.split(",")]
        self.sr_batch_num = args.sr_batch_num

        self.predictor, self.input_tensor, self.output_tensors, self.config = \
            utility.create_predictor(args, 'sr', logger)
        self.benchmark = args.benchmark
        if args.benchmark:
            import auto_log
            pid = os.getpid()
            gpu_id = utility.get_infer_gpuid()
            self.autolog = auto_log.AutoLogger(
                model_name="sr",
                model_precision=args.precision,
                batch_size=args.sr_batch_num,
                data_shape="dynamic",
                save_path=None,  #args.save_log_path,
                inference_config=self.config,
                pids=pid,
                process_name=None,
                gpu_ids=gpu_id if args.use_gpu else None,
                time_keys=[
                    'preprocess_time', 'inference_time', 'postprocess_time'
                ],
                warmup=0,
                logger=logger)

    def resize_norm_img(self, img):
        imgC, imgH, imgW = self.sr_image_shape
        img = img.resize((imgW // 2, imgH // 2), Image.BICUBIC)
        img_numpy = np.array(img).astype("float32")
        img_numpy = img_numpy.transpose((2, 0, 1)) / 255
        return img_numpy

    def __call__(self, img_list):
        img_num = len(img_list)
        batch_num = self.sr_batch_num
        st = time.time()
        st = time.time()
        all_result = [] * img_num
        if self.benchmark:
            self.autolog.times.start()
        for beg_img_no in range(0, img_num, batch_num):
            end_img_no = min(img_num, beg_img_no + batch_num)
            norm_img_batch = []
            imgC, imgH, imgW = self.sr_image_shape
            for ino in range(beg_img_no, end_img_no):
                norm_img = self.resize_norm_img(img_list[ino])
                norm_img = norm_img[np.newaxis, :]
                norm_img_batch.append(norm_img)

            norm_img_batch = np.concatenate(norm_img_batch)
            norm_img_batch = norm_img_batch.copy()
            if self.benchmark:
                self.autolog.times.stamp()
            self.input_tensor.copy_from_cpu(norm_img_batch)
            self.predictor.run()
            outputs = []
            for output_tensor in self.output_tensors:
                output = output_tensor.copy_to_cpu()
                outputs.append(output)
            if len(outputs) != 1:
                preds = outputs
            else:
                preds = outputs[0]
            all_result.append(outputs)
        if self.benchmark:
            self.autolog.times.end(stamp=True)
        return all_result, time.time() - st


def main(args):
    image_file_list = get_image_file_list(args.image_dir)
    text_recognizer = TextSR(args)
    valid_image_file_list = []
    img_list = []

    # warmup 2 times
    if args.warmup:
        img = np.random.uniform(0, 255, [16, 64, 3]).astype(np.uint8)
        for i in range(2):
            res = text_recognizer([img] * int(args.sr_batch_num))

    for image_file in image_file_list:
        img, flag = check_and_read_gif(image_file)
        if not flag:
            img = Image.open(image_file).convert("RGB")
        if img is None:
            logger.info("error in loading image:{}".format(image_file))
            continue
        valid_image_file_list.append(image_file)
        img_list.append(img)
    try:
        preds, _ = text_recognizer(img_list)
        for beg_no in range(len(preds)):
            sr_img = preds[beg_no][1]
            lr_img = preds[beg_no][0]
            for i in (range(sr_img.shape[0])):
                fm_sr = (sr_img[i] * 255).transpose(1, 2, 0).astype(np.uint8)
                fm_lr = (lr_img[i] * 255).transpose(1, 2, 0).astype(np.uint8)
                img_name_pure = os.path.split(valid_image_file_list[
                    beg_no * args.sr_batch_num + i])[-1]
                cv2.imwrite("infer_result/sr_{}".format(img_name_pure),
                            fm_sr[:, :, ::-1])
                logger.info("The visualized image saved in infer_result/sr_{}".
                            format(img_name_pure))

    except Exception as E:
        logger.info(traceback.format_exc())
        logger.info(E)
        exit()
    if args.benchmark:
        text_recognizer.autolog.report()


if __name__ == "__main__":
    main(utility.parse_args())