ocr_db_crnn.cc 11.5 KB
Newer Older
L
LDOUVLEV 已提交
1
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
L
LDOUBLEV 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <chrono>
#include "paddle_api.h"  // NOLINT

L
LDOUVLEV 已提交
18 19
#include "crnn_process.h"
#include "db_post_process.h"
L
LDOUBLEV 已提交
20 21

using namespace paddle::lite_api;  // NOLINT
L
LDOUVLEV 已提交
22
using namespace std;
L
LDOUBLEV 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

// fill tensor with mean and scale and trans layout: nhwc -> nchw, neon speed up
void neon_mean_scale(const float* din,
                     float* dout,
                     int size,
                     const std::vector<float> mean,
                     const std::vector<float> scale) {
  if (mean.size() != 3 || scale.size() != 3) {
    std::cerr << "[ERROR] mean or scale size must equal to 3\n";
    exit(1);
  }
  float32x4_t vmean0 = vdupq_n_f32(mean[0]);
  float32x4_t vmean1 = vdupq_n_f32(mean[1]);
  float32x4_t vmean2 = vdupq_n_f32(mean[2]);
  float32x4_t vscale0 = vdupq_n_f32(scale[0]);
  float32x4_t vscale1 = vdupq_n_f32(scale[1]);
  float32x4_t vscale2 = vdupq_n_f32(scale[2]);

  float* dout_c0 = dout;
  float* dout_c1 = dout + size;
  float* dout_c2 = dout + size * 2;

  int i = 0;
  for (; i < size - 3; i += 4) {
    float32x4x3_t vin3 = vld3q_f32(din);
    float32x4_t vsub0 = vsubq_f32(vin3.val[0], vmean0);
    float32x4_t vsub1 = vsubq_f32(vin3.val[1], vmean1);
    float32x4_t vsub2 = vsubq_f32(vin3.val[2], vmean2);
    float32x4_t vs0 = vmulq_f32(vsub0, vscale0);
    float32x4_t vs1 = vmulq_f32(vsub1, vscale1);
    float32x4_t vs2 = vmulq_f32(vsub2, vscale2);
    vst1q_f32(dout_c0, vs0);
    vst1q_f32(dout_c1, vs1);
    vst1q_f32(dout_c2, vs2);

    din += 12;
    dout_c0 += 4;
    dout_c1 += 4;
    dout_c2 += 4;
  }
  for (; i < size; i++) {
    *(dout_c0++) = (*(din++) - mean[0]) * scale[0];
    *(dout_c1++) = (*(din++) - mean[1]) * scale[1];
    *(dout_c2++) = (*(din++) - mean[2]) * scale[2];
  }
}

// resize image to a size multiple of 32 which is required by the network
L
LDOUVLEV 已提交
71 72 73
cv::Mat DetResizeImg(const cv::Mat img,
                     int max_size_len,
                     std::vector<float>& ratio_hw) {
L
LDOUBLEV 已提交
74 75 76 77
  int w = img.cols;
  int h = img.rows;

  float ratio = 1.f;
L
LDOUVLEV 已提交
78 79 80
  int max_wh = w >= h ? w : h;
  if (max_wh > max_size_len) {
    if (h > w) {
L
LDOUBLEV 已提交
81 82 83 84 85 86 87 88 89 90
      ratio = float(max_size_len) / float(h);
    } else {
      ratio = float(max_size_len) / float(w);
    }
  }

  int resize_h = int(float(h) * ratio);
  int resize_w = int(float(w) * ratio);
  if (resize_h % 32 == 0)
    resize_h = resize_h;
L
LDOUVLEV 已提交
91
  else if (resize_h / 32 < 1 + 1e-5)
L
LDOUBLEV 已提交
92 93 94 95 96 97
    resize_h = 32;
  else
    resize_h = (resize_h / 32 - 1) * 32;

  if (resize_w % 32 == 0)
    resize_w = resize_w;
L
LDOUVLEV 已提交
98
  else if (resize_w / 32 < 1 + 1e-5)
L
LDOUBLEV 已提交
99 100
    resize_w = 32;
  else
L
LDOUVLEV 已提交
101
    resize_w = (resize_w / 32 - 1) * 32;
L
LDOUBLEV 已提交
102 103 104 105

  cv::Mat resize_img;
  cv::resize(img, resize_img, cv::Size(resize_w, resize_h));

L
LDOUVLEV 已提交
106 107
  ratio_hw.push_back(float(resize_h) / float(h));
  ratio_hw.push_back(float(resize_w) / float(w));
L
LDOUBLEV 已提交
108 109 110
  return resize_img;
}

L
LDOUVLEV 已提交
111 112 113 114 115 116
void RunRecModel(std::vector<std::vector<std::vector<int>>> boxes,
                 cv::Mat img,
                 std::shared_ptr<PaddlePredictor> predictor_crnn,
                 std::string dict_path,
                 std::vector<std::string>& rec_text,
                 std::vector<float>& rec_text_score) {
L
LDOUBLEV 已提交
117 118 119 120 121 122 123 124
  std::vector<float> mean = {0.5f, 0.5f, 0.5f};
  std::vector<float> scale = {1 / 0.5f, 1 / 0.5f, 1 / 0.5f};

  cv::Mat srcimg;
  img.copyTo(srcimg);
  cv::Mat crop_img;
  cv::Mat resize_img;

L
LDOUVLEV 已提交
125
  auto charactor_dict = ReadDict(dict_path);
L
LDOUBLEV 已提交
126 127

  int index = 0;
L
LDOUVLEV 已提交
128 129
  for (int i = boxes.size() - 1; i >= 0; i--) {
    crop_img = GetRotateCropImage(srcimg, boxes[i]);
L
LDOUBLEV 已提交
130 131
    float wh_ratio = float(crop_img.cols) / float(crop_img.rows);

L
LDOUVLEV 已提交
132
    resize_img = CrnnResizeImg(crop_img, wh_ratio);
L
LDOUBLEV 已提交
133 134
    resize_img.convertTo(resize_img, CV_32FC3, 1 / 255.f);

L
LDOUVLEV 已提交
135
    const float* dimg = reinterpret_cast<const float*>(resize_img.data);
L
LDOUBLEV 已提交
136

L
LDOUVLEV 已提交
137 138
    std::unique_ptr<Tensor> input_tensor0(
        std::move(predictor_crnn->GetInput(0)));
L
LDOUBLEV 已提交
139
    input_tensor0->Resize({1, 3, resize_img.rows, resize_img.cols});
L
LDOUVLEV 已提交
140
    auto* data0 = input_tensor0->mutable_data<float>();
L
LDOUBLEV 已提交
141

L
LDOUVLEV 已提交
142 143
    neon_mean_scale(
        dimg, data0, resize_img.rows * resize_img.cols, mean, scale);
L
LDOUBLEV 已提交
144 145 146 147 148
    //// Run CRNN predictor
    predictor_crnn->Run();

    // Get output and run postprocess
    std::unique_ptr<const Tensor> output_tensor0(
L
LDOUVLEV 已提交
149 150
        std::move(predictor_crnn->GetOutput(0)));
    auto* rec_idx = output_tensor0->data<int>();
L
LDOUBLEV 已提交
151 152 153 154 155

    auto rec_idx_lod = output_tensor0->lod();
    auto shape_out = output_tensor0->shape();

    std::vector<int> pred_idx;
L
LDOUVLEV 已提交
156 157
    for (int n = int(rec_idx_lod[0][0]); n < int(rec_idx_lod[0][1] * 2);
         n += 2) {
L
LDOUBLEV 已提交
158 159 160
      pred_idx.push_back(int(rec_idx[n]));
    }

L
LDOUVLEV 已提交
161
    if (pred_idx.size() < 1e-3) continue;
L
LDOUBLEV 已提交
162 163

    index += 1;
L
LDOUVLEV 已提交
164
    std::string pred_txt = "";
L
LDOUBLEV 已提交
165
    for (int n = 0; n < pred_idx.size(); n++) {
L
LDOUVLEV 已提交
166
      pred_txt += charactor_dict[pred_idx[n]];
L
LDOUBLEV 已提交
167
    }
L
LDOUVLEV 已提交
168
    rec_text.push_back(pred_txt);
L
LDOUBLEV 已提交
169 170

    ////get score
L
LDOUVLEV 已提交
171 172 173
    std::unique_ptr<const Tensor> output_tensor1(
        std::move(predictor_crnn->GetOutput(1)));
    auto* predict_batch = output_tensor1->data<float>();
L
LDOUBLEV 已提交
174 175 176 177 178 179 180 181 182 183 184
    auto predict_shape = output_tensor1->shape();

    auto predict_lod = output_tensor1->lod();

    int argmax_idx;
    int blank = predict_shape[1];
    float score = 0.f;
    int count = 0;
    float max_value = 0.0f;

    for (int n = predict_lod[0][0]; n < predict_lod[0][1] - 1; n++) {
L
LDOUVLEV 已提交
185 186 187 188 189
      argmax_idx = int(Argmax(&predict_batch[n * predict_shape[1]],
                              &predict_batch[(n + 1) * predict_shape[1]]));
      max_value =
          float(*std::max_element(&predict_batch[n * predict_shape[1]],
                                  &predict_batch[(n + 1) * predict_shape[1]]));
L
LDOUBLEV 已提交
190 191 192 193 194 195 196

      if (blank - 1 - argmax_idx > 1e-5) {
        score += max_value;
        count += 1;
      }
    }
    score /= count;
L
LDOUVLEV 已提交
197
    rec_text_score.push_back(score);
L
LDOUBLEV 已提交
198 199 200
  }
}

L
LDOUVLEV 已提交
201 202 203 204
std::vector<std::vector<std::vector<int>>> RunDetModel(
    std::shared_ptr<PaddlePredictor> predictor,
    cv::Mat img,
    std::map<std::string, double> Config) {
L
LDOUBLEV 已提交
205
  // Read img
L
LDOUVLEV 已提交
206
  int max_side_len = int(Config["max_side_len"]);
L
LDOUBLEV 已提交
207 208 209 210

  cv::Mat srcimg;
  img.copyTo(srcimg);

L
LDOUVLEV 已提交
211 212
  std::vector<float> ratio_hw;
  img = DetResizeImg(img, max_side_len, ratio_hw);
L
LDOUBLEV 已提交
213 214 215 216 217 218 219 220 221
  cv::Mat img_fp;
  img.convertTo(img_fp, CV_32FC3, 1.0 / 255.f);

  // Prepare input data from image
  std::unique_ptr<Tensor> input_tensor0(std::move(predictor->GetInput(0)));
  input_tensor0->Resize({1, 3, img_fp.rows, img_fp.cols});
  auto* data0 = input_tensor0->mutable_data<float>();

  std::vector<float> mean = {0.485f, 0.456f, 0.406f};
L
LDOUVLEV 已提交
222
  std::vector<float> scale = {1 / 0.229f, 1 / 0.224f, 1 / 0.225f};
L
LDOUBLEV 已提交
223 224 225 226 227 228 229
  const float* dimg = reinterpret_cast<const float*>(img_fp.data);
  neon_mean_scale(dimg, data0, img_fp.rows * img_fp.cols, mean, scale);

  // Run predictor
  predictor->Run();

  // Get output and post process
L
LDOUVLEV 已提交
230 231
  std::unique_ptr<const Tensor> output_tensor(
      std::move(predictor->GetOutput(0)));
L
LDOUBLEV 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244
  auto* outptr = output_tensor->data<float>();
  auto shape_out = output_tensor->shape();

  int64_t out_numl = 1;
  double sum = 0;
  for (auto i : shape_out) {
    out_numl *= i;
  }

  // Save output
  float pred[shape_out[2]][shape_out[3]];
  unsigned char cbuf[shape_out[2]][shape_out[3]];

L
LDOUVLEV 已提交
245 246 247 248
  for (int i = 0; i < int(shape_out[2] * shape_out[3]); i++) {
    pred[int(i / int(shape_out[3]))][int(i % shape_out[3])] = float(outptr[i]);
    cbuf[int(i / int(shape_out[3]))][int(i % shape_out[3])] =
        (unsigned char)((outptr[i]) * 255);
L
LDOUBLEV 已提交
249 250 251
  }

  cv::Mat cbuf_map(shape_out[2], shape_out[3], CV_8UC1, (unsigned char*)cbuf);
L
LDOUVLEV 已提交
252
  cv::Mat pred_map(shape_out[2], shape_out[3], CV_32F, (float*)pred);
L
LDOUBLEV 已提交
253

L
LDOUVLEV 已提交
254
  const double threshold = double(Config["det_db_thresh"]) * 255;
L
LDOUBLEV 已提交
255 256 257 258
  const double maxvalue = 255;
  cv::Mat bit_map;
  cv::threshold(cbuf_map, bit_map, threshold, maxvalue, cv::THRESH_BINARY);

L
LDOUVLEV 已提交
259
  auto boxes = BoxesFromBitmap(pred_map, bit_map, Config);
L
LDOUBLEV 已提交
260

L
LDOUVLEV 已提交
261 262
  std::vector<std::vector<std::vector<int>>> filter_boxes =
      FilterTagDetRes(boxes, ratio_hw[0], ratio_hw[1], srcimg);
L
LDOUBLEV 已提交
263

L
LDOUVLEV 已提交
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
  return filter_boxes;
}

std::shared_ptr<PaddlePredictor> loadModel(std::string model_file) {
  MobileConfig config;
  config.set_model_from_file(model_file);

  std::shared_ptr<PaddlePredictor> predictor =
      CreatePaddlePredictor<MobileConfig>(config);
  return predictor;
}

cv::Mat Visualization(cv::Mat srcimg,
                      std::vector<std::vector<std::vector<int>>> boxes) {
  cv::Point rook_points[boxes.size()][4];
  for (int n = 0; n < boxes.size(); n++) {
    for (int m = 0; m < boxes[0].size(); m++) {
      rook_points[n][m] = cv::Point(int(boxes[n][m][0]), int(boxes[n][m][1]));
L
LDOUBLEV 已提交
282 283 284 285
    }
  }
  cv::Mat img_vis;
  srcimg.copyTo(img_vis);
L
LDOUVLEV 已提交
286 287 288 289
  for (int n = 0; n < boxes.size(); n++) {
    const cv::Point* ppt[1] = {rook_points[n]};
    int npt[] = {4};
    cv::polylines(img_vis, ppt, npt, 1, 1, CV_RGB(0, 255, 0), 2, 8, 0);
L
LDOUBLEV 已提交
290 291
  }

L
LDOUVLEV 已提交
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
  cv::imwrite("./imgs/vis.jpg", img_vis);
  std::cout << "The detection visualized image saved in ./imgs/vis.jpg"
            << std::endl;
  return img_vis;
}

std::vector<std::string> split(const std::string& str,
                               const std::string& delim) {
  std::vector<std::string> res;
  if ("" == str) return res;
  char* strs = new char[str.length() + 1];
  std::strcpy(strs, str.c_str());

  char* d = new char[delim.length() + 1];
  std::strcpy(d, delim.c_str());

  char* p = std::strtok(strs, d);
  while (p) {
    string s = p;
    res.push_back(s);
    p = std::strtok(NULL, d);
  }
L
LDOUBLEV 已提交
314

L
LDOUVLEV 已提交
315
  return res;
L
LDOUBLEV 已提交
316 317
}

L
LDOUVLEV 已提交
318 319 320 321 322 323 324 325 326 327
std::map<std::string, double> LoadConfigTxt(std::string config_path) {
  auto config = ReadDict(config_path);

  std::map<std::string, double> dict;
  for (int i = 0; i < config.size(); i++) {
    std::vector<std::string> res = split(config[i], " ");
    dict[res[0]] = stod(res[1]);
  }
  return dict;
}
L
LDOUBLEV 已提交
328 329

int main(int argc, char** argv) {
L
LDOUVLEV 已提交
330 331 332
  if (argc < 5) {
    std::cerr << "[ERROR] usage: " << argv[0]
              << " det_model_file rec_model_file image_path\n";
L
LDOUBLEV 已提交
333 334 335 336 337
    exit(1);
  }
  std::string det_model_file = argv[1];
  std::string rec_model_file = argv[2];
  std::string img_path = argv[3];
L
LDOUVLEV 已提交
338 339 340 341
  std::string dict_path = argv[4];

  //// load config from txt file
  auto Config = LoadConfigTxt("./config.txt");
L
LDOUBLEV 已提交
342 343 344

  auto start = std::chrono::system_clock::now();

L
LDOUVLEV 已提交
345 346 347
  auto det_predictor = loadModel(det_model_file);
  auto rec_predictor = loadModel(rec_model_file);

L
LDOUBLEV 已提交
348
  cv::Mat srcimg = cv::imread(img_path, cv::IMREAD_COLOR);
L
LDOUVLEV 已提交
349
  auto boxes = RunDetModel(det_predictor, srcimg, Config);
L
LDOUBLEV 已提交
350

L
LDOUVLEV 已提交
351 352 353 354
  std::vector<std::string> rec_text;
  std::vector<float> rec_text_score;
  RunRecModel(
      boxes, srcimg, rec_predictor, dict_path, rec_text, rec_text_score);
L
LDOUBLEV 已提交
355

L
LDOUVLEV 已提交
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
  auto end = std::chrono::system_clock::now();
  auto duration =
      std::chrono::duration_cast<std::chrono::microseconds>(end - start);

  //// visualization
  auto img_vis = Visualization(srcimg, boxes);

  //// print recognized text
  for (int i = 0; i < rec_text.size(); i++) {
    std::cout << i << "\t" << rec_text[i] << "\t" << rec_text_score[i]
              << std::endl;
  }

  std::cout << "花费了"
            << double(duration.count()) *
                   std::chrono::microseconds::period::num /
                   std::chrono::microseconds::period::den
L
LDOUBLEV 已提交
373 374 375 376
            << "秒" << std::endl;

  return 0;
}