program.py 21.0 KB
Newer Older
M
refine  
MissPenguin 已提交
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
L
LDOUBLEV 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

W
WenmuZhou 已提交
19
import os
L
LDOUBLEV 已提交
20
import sys
21
import platform
L
LDOUBLEV 已提交
22 23
import yaml
import time
24
import datetime
W
WenmuZhou 已提交
25 26 27 28 29
import paddle
import paddle.distributed as dist
from tqdm import tqdm
from argparse import ArgumentParser, RawDescriptionHelpFormatter

L
LDOUBLEV 已提交
30 31
from ppocr.utils.stats import TrainingStats
from ppocr.utils.save_load import save_model
32
from ppocr.utils.utility import print_dict, AverageMeter
D
dyning 已提交
33
from ppocr.utils.logging import get_logger
L
LDOUBLEV 已提交
34
from ppocr.utils import profiler
D
dyning 已提交
35
from ppocr.data import build_dataloader
L
LDOUBLEV 已提交
36

D
dyning 已提交
37

L
LDOUBLEV 已提交
38 39 40 41 42 43 44
class ArgsParser(ArgumentParser):
    def __init__(self):
        super(ArgsParser, self).__init__(
            formatter_class=RawDescriptionHelpFormatter)
        self.add_argument("-c", "--config", help="configuration file to use")
        self.add_argument(
            "-o", "--opt", nargs='+', help="set configuration options")
L
LDOUBLEV 已提交
45 46 47 48 49
        self.add_argument(
            '-p',
            '--profiler_options',
            type=str,
            default=None,
50 51
            help='The option of profiler, which should be in format ' \
                 '\"key1=value1;key2=value2;key3=value3\".'
L
LDOUBLEV 已提交
52
        )
L
LDOUBLEV 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

    def parse_args(self, argv=None):
        args = super(ArgsParser, self).parse_args(argv)
        assert args.config is not None, \
            "Please specify --config=configure_file_path."
        args.opt = self._parse_opt(args.opt)
        return args

    def _parse_opt(self, opts):
        config = {}
        if not opts:
            return config
        for s in opts:
            s = s.strip()
            k, v = s.split('=')
            config[k] = yaml.load(v, Loader=yaml.Loader)
        return config


def load_config(file_path):
    """
    Load config from yml/yaml file.
    Args:
        file_path (str): Path of the config file to be loaded.
    Returns: global config
    """
    _, ext = os.path.splitext(file_path)
    assert ext in ['.yml', '.yaml'], "only support yaml files for now"
81 82
    config = yaml.load(open(file_path, 'rb'), Loader=yaml.Loader)
    return config
L
LDOUBLEV 已提交
83 84


85
def merge_config(config, opts):
L
LDOUBLEV 已提交
86 87 88 89 90 91
    """
    Merge config into global config.
    Args:
        config (dict): Config to be merged.
    Returns: global config
    """
92
    for key, value in opts.items():
L
LDOUBLEV 已提交
93
        if "." not in key:
94 95
            if isinstance(value, dict) and key in config:
                config[key].update(value)
L
LDOUBLEV 已提交
96
            else:
97
                config[key] = value
L
LDOUBLEV 已提交
98 99
        else:
            sub_keys = key.split('.')
T
tink2123 已提交
100
            assert (
101
                sub_keys[0] in config
102 103
            ), "the sub_keys can only be one of global_config: {}, but get: " \
               "{}, please check your running command".format(
104 105
                config.keys(), sub_keys[0])
            cur = config[sub_keys[0]]
L
LDOUBLEV 已提交
106 107 108 109 110
            for idx, sub_key in enumerate(sub_keys[1:]):
                if idx == len(sub_keys) - 2:
                    cur[sub_key] = value
                else:
                    cur = cur[sub_key]
111
    return config
L
LDOUBLEV 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125


def check_gpu(use_gpu):
    """
    Log error and exit when set use_gpu=true in paddlepaddle
    cpu version.
    """
    err = "Config use_gpu cannot be set as true while you are " \
          "using paddlepaddle cpu version ! \nPlease try: \n" \
          "\t1. Install paddlepaddle-gpu to run model on GPU \n" \
          "\t2. Set use_gpu as false in config file to run " \
          "model on CPU"

    try:
W
WenmuZhou 已提交
126
        if use_gpu and not paddle.is_compiled_with_cuda():
W
WenmuZhou 已提交
127
            print(err)
L
LDOUBLEV 已提交
128 129 130 131 132
            sys.exit(1)
    except Exception as e:
        pass


133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
def check_xpu(use_xpu):
    """
    Log error and exit when set use_xpu=true in paddlepaddle
    cpu/gpu version.
    """
    err = "Config use_xpu cannot be set as true while you are " \
          "using paddlepaddle cpu/gpu version ! \nPlease try: \n" \
          "\t1. Install paddlepaddle-xpu to run model on XPU \n" \
          "\t2. Set use_xpu as false in config file to run " \
          "model on CPU/GPU"

    try:
        if use_xpu and not paddle.is_compiled_with_xpu():
            print(err)
            sys.exit(1)
    except Exception as e:
        pass


W
WenmuZhou 已提交
152
def train(config,
D
dyning 已提交
153 154 155
          train_dataloader,
          valid_dataloader,
          device,
W
WenmuZhou 已提交
156 157 158 159 160 161 162 163
          model,
          loss_class,
          optimizer,
          lr_scheduler,
          post_process_class,
          eval_class,
          pre_best_model_dict,
          logger,
S
stephon 已提交
164 165
          vdl_writer=None,
          scaler=None):
W
WenmuZhou 已提交
166 167
    cal_metric_during_train = config['Global'].get('cal_metric_during_train',
                                                   False)
168
    calc_epoch_interval = config['Global'].get('calc_epoch_interval', 1)
L
LDOUBLEV 已提交
169 170 171 172
    log_smooth_window = config['Global']['log_smooth_window']
    epoch_num = config['Global']['epoch_num']
    print_batch_step = config['Global']['print_batch_step']
    eval_batch_step = config['Global']['eval_batch_step']
L
LDOUBLEV 已提交
173
    profiler_options = config['profiler_options']
W
WenmuZhou 已提交
174

D
dyning 已提交
175
    global_step = 0
176 177
    if 'global_step' in pre_best_model_dict:
        global_step = pre_best_model_dict['global_step']
L
LDOUBLEV 已提交
178 179 180 181
    start_eval_step = 0
    if type(eval_batch_step) == list and len(eval_batch_step) >= 2:
        start_eval_step = eval_batch_step[0]
        eval_batch_step = eval_batch_step[1]
W
WenmuZhou 已提交
182 183
        if len(valid_dataloader) == 0:
            logger.info(
184 185
                'No Images in eval dataset, evaluation during training ' \
                'will be disabled'
W
WenmuZhou 已提交
186 187
            )
            start_eval_step = 1e111
L
LDOUBLEV 已提交
188
        logger.info(
189 190
            "During the training process, after the {}th iteration, " \
            "an evaluation is run every {} iterations".
L
LDOUBLEV 已提交
191
            format(start_eval_step, eval_batch_step))
L
LDOUBLEV 已提交
192 193
    save_epoch_step = config['Global']['save_epoch_step']
    save_model_dir = config['Global']['save_model_dir']
194 195
    if not os.path.exists(save_model_dir):
        os.makedirs(save_model_dir)
W
WenmuZhou 已提交
196 197 198 199
    main_indicator = eval_class.main_indicator
    best_model_dict = {main_indicator: 0}
    best_model_dict.update(pre_best_model_dict)
    train_stats = TrainingStats(log_smooth_window, ['lr'])
T
tink2123 已提交
200
    model_average = False
W
WenmuZhou 已提交
201 202
    model.train()

T
tink2123 已提交
203
    use_srn = config['Architecture']['algorithm'] == "SRN"
A
andyjpaddle 已提交
204
    extra_input_models = ["SRN", "NRTR", "SAR", "SEED", "SVTR"]
A
andyjpaddle 已提交
205
    extra_input = False
A
andyjpaddle 已提交
206
    if config['Architecture']['algorithm'] == 'Distillation':
A
andyjpaddle 已提交
207 208 209
        for key in config['Architecture']["Models"]:
            extra_input = extra_input or config['Architecture']['Models'][key][
                'algorithm'] in extra_input_models
A
andyjpaddle 已提交
210 211
    else:
        extra_input = config['Architecture']['algorithm'] in extra_input_models
212
    try:
L
fix bug  
LDOUBLEV 已提交
213
        model_type = config['Architecture']['model_type']
214
    except:
L
fix bug  
LDOUBLEV 已提交
215
        model_type = None
A
andyjpaddle 已提交
216

T
tink2123 已提交
217
    algorithm = config['Architecture']['algorithm']
T
tink2123 已提交
218

219 220 221 222
    start_epoch = best_model_dict[
        'start_epoch'] if 'start_epoch' in best_model_dict else 1

    total_samples = 0
223 224
    train_reader_cost = 0.0
    train_batch_cost = 0.0
225
    reader_start = time.time()
226
    eta_meter = AverageMeter()
227 228 229

    max_iter = len(train_dataloader) - 1 if platform.system(
    ) == "Windows" else len(train_dataloader)
W
WenmuZhou 已提交
230

T
tink2123 已提交
231
    for epoch in range(start_epoch, epoch_num + 1):
232 233 234 235 236
        if train_dataloader.dataset.need_reset:
            train_dataloader = build_dataloader(
                config, 'Train', device, logger, seed=epoch)
            max_iter = len(train_dataloader) - 1 if platform.system(
            ) == "Windows" else len(train_dataloader)
W
WenmuZhou 已提交
237
        for idx, batch in enumerate(train_dataloader):
L
LDOUBLEV 已提交
238
            profiler.add_profiler_step(profiler_options)
文幕地方's avatar
文幕地方 已提交
239
            train_reader_cost += time.time() - reader_start
J
Jane-Ding 已提交
240
            if idx >= max_iter:
W
WenmuZhou 已提交
241 242 243
                break
            lr = optimizer.get_lr()
            images = batch[0]
T
tink2123 已提交
244
            if use_srn:
T
tink2123 已提交
245
                model_average = True
S
stephon 已提交
246 247 248 249 250 251 252 253

            # use amp
            if scaler:
                with paddle.amp.auto_cast():
                    if model_type == 'table' or extra_input:
                        preds = model(images, data=batch[1:])
                    else:
                        preds = model(images)
T
tink2123 已提交
254
            else:
S
stephon 已提交
255 256
                if model_type == 'table' or extra_input:
                    preds = model(images, data=batch[1:])
257
                elif model_type in ["kie", 'vqa']:
L
LDOUBLEV 已提交
258
                    preds = model(batch)
S
stephon 已提交
259 260
                else:
                    preds = model(images)
261

W
WenmuZhou 已提交
262 263
            loss = loss_class(preds, batch)
            avg_loss = loss['loss']
S
stephon 已提交
264 265 266 267 268 269 270 271

            if scaler:
                scaled_avg_loss = scaler.scale(avg_loss)
                scaled_avg_loss.backward()
                scaler.minimize(optimizer, scaled_avg_loss)
            else:
                avg_loss.backward()
                optimizer.step()
W
WenmuZhou 已提交
272
            optimizer.clear_grad()
W
WenmuZhou 已提交
273

274 275 276 277 278
            if cal_metric_during_train and epoch % calc_epoch_interval == 0:  # only rec and cls need
                batch = [item.numpy() for item in batch]
                if model_type in ['table', 'kie']:
                    eval_class(preds, batch)
                else:
A
andyjpaddle 已提交
279 280 281 282 283 284
                    if config['Loss']['name'] in ['MultiLoss', 'MultiLoss_v2'
                                                  ]:  # for multi head loss
                        post_result = post_process_class(
                            preds['ctc'], batch[1])  # for CTC head out
                    else:
                        post_result = post_process_class(preds, batch[1])
285 286 287 288
                    eval_class(post_result, batch)
                metric = eval_class.get_metric()
                train_stats.update(metric)

289 290 291
            train_batch_time = time.time() - reader_start
            train_batch_cost += train_batch_time
            eta_meter.update(train_batch_time)
292
            global_step += 1
文幕地方's avatar
文幕地方 已提交
293
            total_samples += len(images)
W
WenmuZhou 已提交
294

D
dyning 已提交
295 296
            if not isinstance(lr_scheduler, float):
                lr_scheduler.step()
W
WenmuZhou 已提交
297 298 299 300 301 302 303 304 305 306 307

            # logger and visualdl
            stats = {k: v.numpy().mean() for k, v in loss.items()}
            stats['lr'] = lr
            train_stats.update(stats)

            if vdl_writer is not None and dist.get_rank() == 0:
                for k, v in train_stats.get().items():
                    vdl_writer.add_scalar('TRAIN/{}'.format(k), v, global_step)
                vdl_writer.add_scalar('TRAIN/lr', lr, global_step)

308 309 310
            if dist.get_rank() == 0 and (
                (global_step > 0 and global_step % print_batch_step == 0) or
                (idx >= len(train_dataloader) - 1)):
W
WenmuZhou 已提交
311
                logs = train_stats.log()
L
LDOUBLEV 已提交
312

313 314 315 316 317
                eta_sec = ((epoch_num + 1 - epoch) * \
                    len(train_dataloader) - idx - 1) * eta_meter.avg
                eta_sec_format = str(datetime.timedelta(seconds=int(eta_sec)))
                strs = 'epoch: [{}/{}], global_step: {}, {}, avg_reader_cost: ' \
                       '{:.5f} s, avg_batch_cost: {:.5f} s, avg_samples: {}, ' \
L
LDOUBLEV 已提交
318
                       'ips: {:.5f} samples/s, eta: {}'.format(
319 320 321 322 323
                    epoch, epoch_num, global_step, logs,
                    train_reader_cost / print_batch_step,
                    train_batch_cost / print_batch_step,
                    total_samples / print_batch_step,
                    total_samples / train_batch_cost, eta_sec_format)
W
WenmuZhou 已提交
324
                logger.info(strs)
325

文幕地方's avatar
文幕地方 已提交
326
                total_samples = 0
327 328
                train_reader_cost = 0.0
                train_batch_cost = 0.0
W
WenmuZhou 已提交
329 330
            # eval
            if global_step > start_eval_step and \
331 332
                    (global_step - start_eval_step) % eval_batch_step == 0 \
                    and dist.get_rank() == 0:
T
tink2123 已提交
333 334 335 336 337 338 339
                if model_average:
                    Model_Average = paddle.incubate.optimizer.ModelAverage(
                        0.15,
                        parameters=model.parameters(),
                        min_average_window=10000,
                        max_average_window=15625)
                    Model_Average.apply()
T
tink2123 已提交
340 341 342 343 344
                cur_metric = eval(
                    model,
                    valid_dataloader,
                    post_process_class,
                    eval_class,
M
refine  
MissPenguin 已提交
345
                    model_type,
T
tink2123 已提交
346
                    extra_input=extra_input)
L
LDOUBLEV 已提交
347 348 349
                cur_metric_str = 'cur metric, {}'.format(', '.join(
                    ['{}: {}'.format(k, v) for k, v in cur_metric.items()]))
                logger.info(cur_metric_str)
W
WenmuZhou 已提交
350 351 352

                # logger metric
                if vdl_writer is not None:
L
LDOUBLEV 已提交
353
                    for k, v in cur_metric.items():
W
WenmuZhou 已提交
354 355
                        if isinstance(v, (float, int)):
                            vdl_writer.add_scalar('EVAL/{}'.format(k),
L
LDOUBLEV 已提交
356 357
                                                  cur_metric[k], global_step)
                if cur_metric[main_indicator] >= best_model_dict[
W
WenmuZhou 已提交
358
                        main_indicator]:
L
LDOUBLEV 已提交
359
                    best_model_dict.update(cur_metric)
W
WenmuZhou 已提交
360 361 362 363 364 365
                    best_model_dict['best_epoch'] = epoch
                    save_model(
                        model,
                        optimizer,
                        save_model_dir,
                        logger,
366
                        config,
W
WenmuZhou 已提交
367 368 369
                        is_best=True,
                        prefix='best_accuracy',
                        best_model_dict=best_model_dict,
370 371
                        epoch=epoch,
                        global_step=global_step)
L
LDOUBLEV 已提交
372
                best_str = 'best metric, {}'.format(', '.join([
W
WenmuZhou 已提交
373 374 375 376 377 378 379 380
                    '{}: {}'.format(k, v) for k, v in best_model_dict.items()
                ]))
                logger.info(best_str)
                # logger best metric
                if vdl_writer is not None:
                    vdl_writer.add_scalar('EVAL/best_{}'.format(main_indicator),
                                          best_model_dict[main_indicator],
                                          global_step)
381

文幕地方's avatar
文幕地方 已提交
382
            reader_start = time.time()
W
WenmuZhou 已提交
383 384 385 386 387 388
        if dist.get_rank() == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
389
                config,
W
WenmuZhou 已提交
390 391 392
                is_best=False,
                prefix='latest',
                best_model_dict=best_model_dict,
393 394
                epoch=epoch,
                global_step=global_step)
W
WenmuZhou 已提交
395 396 397 398 399 400
        if dist.get_rank() == 0 and epoch > 0 and epoch % save_epoch_step == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
401
                config,
W
WenmuZhou 已提交
402 403 404
                is_best=False,
                prefix='iter_epoch_{}'.format(epoch),
                best_model_dict=best_model_dict,
405 406
                epoch=epoch,
                global_step=global_step)
L
LDOUBLEV 已提交
407
    best_str = 'best metric, {}'.format(', '.join(
W
WenmuZhou 已提交
408 409 410 411
        ['{}: {}'.format(k, v) for k, v in best_model_dict.items()]))
    logger.info(best_str)
    if dist.get_rank() == 0 and vdl_writer is not None:
        vdl_writer.close()
L
LDOUBLEV 已提交
412 413 414
    return


M
refine  
MissPenguin 已提交
415 416 417 418
def eval(model,
         valid_dataloader,
         post_process_class,
         eval_class,
L
LDOUBLEV 已提交
419
         model_type=None,
T
tink2123 已提交
420
         extra_input=False):
W
WenmuZhou 已提交
421 422 423 424
    model.eval()
    with paddle.no_grad():
        total_frame = 0.0
        total_time = 0.0
文幕地方's avatar
文幕地方 已提交
425 426 427 428 429
        pbar = tqdm(
            total=len(valid_dataloader),
            desc='eval model:',
            position=0,
            leave=True)
430 431
        max_iter = len(valid_dataloader) - 1 if platform.system(
        ) == "Windows" else len(valid_dataloader)
W
WenmuZhou 已提交
432
        for idx, batch in enumerate(valid_dataloader):
433
            if idx >= max_iter:
W
WenmuZhou 已提交
434
                break
W
fix bug  
WenmuZhou 已提交
435
            images = batch[0]
W
WenmuZhou 已提交
436
            start = time.time()
T
tink2123 已提交
437
            if model_type == 'table' or extra_input:
M
refine  
MissPenguin 已提交
438
                preds = model(images, data=batch[1:])
439
            elif model_type in ["kie", 'vqa']:
L
LDOUBLEV 已提交
440
                preds = model(batch)
X
xiaoting 已提交
441
            else:
L
LDOUBLEV 已提交
442
                preds = model(images)
443 444 445 446 447 448 449

            batch_numpy = []
            for item in batch:
                if isinstance(item, paddle.Tensor):
                    batch_numpy.append(item.numpy())
                else:
                    batch_numpy.append(item)
W
WenmuZhou 已提交
450 451 452
            # Obtain usable results from post-processing methods
            total_time += time.time() - start
            # Evaluate the results of the current batch
L
LDOUBLEV 已提交
453
            if model_type in ['table', 'kie']:
454 455 456 457
                eval_class(preds, batch_numpy)
            elif model_type in ['vqa']:
                post_result = post_process_class(preds, batch_numpy)
                eval_class(post_result, batch_numpy)
M
MissPenguin 已提交
458
            else:
459 460
                post_result = post_process_class(preds, batch_numpy[1])
                eval_class(post_result, batch_numpy)
L
LDOUBLEV 已提交
461

W
fix bug  
WenmuZhou 已提交
462
            pbar.update(1)
W
WenmuZhou 已提交
463
            total_frame += len(images)
L
LDOUBLEV 已提交
464 465
        # Get final metric,eg. acc or hmean
        metric = eval_class.get_metric()
D
dyning 已提交
466

W
fix bug  
WenmuZhou 已提交
467
    pbar.close()
W
WenmuZhou 已提交
468
    model.train()
L
LDOUBLEV 已提交
469 470
    metric['fps'] = total_frame / total_time
    return metric
L
licx 已提交
471

T
tink2123 已提交
472

B
Bin Lu 已提交
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
def update_center(char_center, post_result, preds):
    result, label = post_result
    feats, logits = preds
    logits = paddle.argmax(logits, axis=-1)
    feats = feats.numpy()
    logits = logits.numpy()

    for idx_sample in range(len(label)):
        if result[idx_sample][0] == label[idx_sample][0]:
            feat = feats[idx_sample]
            logit = logits[idx_sample]
            for idx_time in range(len(logit)):
                index = logit[idx_time]
                if index in char_center.keys():
                    char_center[index][0] = (
                        char_center[index][0] * char_center[index][1] +
                        feat[idx_time]) / (char_center[index][1] + 1)
                    char_center[index][1] += 1
                else:
                    char_center[index] = [feat[idx_time], 1]
    return char_center


def get_center(model, eval_dataloader, post_process_class):
    pbar = tqdm(total=len(eval_dataloader), desc='get center:')
    max_iter = len(eval_dataloader) - 1 if platform.system(
    ) == "Windows" else len(eval_dataloader)
    char_center = dict()
    for idx, batch in enumerate(eval_dataloader):
        if idx >= max_iter:
            break
        images = batch[0]
        start = time.time()
        preds = model(images)

        batch = [item.numpy() for item in batch]
        # Obtain usable results from post-processing methods
        post_result = post_process_class(preds, batch[1])

        #update char_center
        char_center = update_center(char_center, post_result, preds)
        pbar.update(1)

    pbar.close()
    for key in char_center.keys():
        char_center[key] = char_center[key][0]
    return char_center


522
def preprocess(is_train=False):
L
licx 已提交
523
    FLAGS = ArgsParser().parse_args()
L
LDOUBLEV 已提交
524
    profiler_options = FLAGS.profiler_options
L
licx 已提交
525
    config = load_config(FLAGS.config)
526
    config = merge_config(config, FLAGS.opt)
L
LDOUBLEV 已提交
527
    profile_dic = {"profiler_options": FLAGS.profiler_options}
528
    config = merge_config(config, profile_dic)
L
licx 已提交
529

W
WenmuZhou 已提交
530 531 532 533 534 535 536 537 538 539
    if is_train:
        # save_config
        save_model_dir = config['Global']['save_model_dir']
        os.makedirs(save_model_dir, exist_ok=True)
        with open(os.path.join(save_model_dir, 'config.yml'), 'w') as f:
            yaml.dump(
                dict(config), f, default_flow_style=False, sort_keys=False)
        log_file = '{}/train.log'.format(save_model_dir)
    else:
        log_file = None
Z
zhoujun 已提交
540
    logger = get_logger(log_file=log_file)
L
licx 已提交
541 542 543 544 545

    # check if set use_gpu=True in paddlepaddle cpu version
    use_gpu = config['Global']['use_gpu']
    check_gpu(use_gpu)

546 547 548 549 550 551
    # check if set use_xpu=True in paddlepaddle cpu/gpu version
    use_xpu = False
    if 'use_xpu' in config['Global']:
        use_xpu = config['Global']['use_xpu']
    check_xpu(use_xpu)

W
WenmuZhou 已提交
552 553
    alg = config['Architecture']['algorithm']
    assert alg in [
J
Jethong 已提交
554
        'EAST', 'DB', 'SAST', 'Rosetta', 'CRNN', 'STARNet', 'RARE', 'SRN',
T
tink2123 已提交
555
        'CLS', 'PGNet', 'Distillation', 'NRTR', 'TableAttn', 'SAR', 'PSE',
A
andyjpaddle 已提交
556
        'SEED', 'SDMGR', 'LayoutXLM', 'LayoutLM', 'PREN', 'FCE', 'SVTR'
W
WenmuZhou 已提交
557
    ]
L
licx 已提交
558

559 560 561 562 563
    device = 'cpu'
    if use_gpu:
        device = 'gpu:{}'.format(dist.ParallelEnv().dev_id)
    if use_xpu:
        device = 'xpu'
W
WenmuZhou 已提交
564
    device = paddle.set_device(device)
D
dyning 已提交
565

D
dyning 已提交
566
    config['Global']['distributed'] = dist.get_world_size() != 1
W
WenmuZhou 已提交
567

littletomatodonkey's avatar
littletomatodonkey 已提交
568
    if config['Global']['use_visualdl'] and dist.get_rank() == 0:
D
dyning 已提交
569
        from visualdl import LogWriter
L
fix bug  
LDOUBLEV 已提交
570
        save_model_dir = config['Global']['save_model_dir']
D
dyning 已提交
571 572 573 574 575 576 577 578 579
        vdl_writer_path = '{}/vdl/'.format(save_model_dir)
        os.makedirs(vdl_writer_path, exist_ok=True)
        vdl_writer = LogWriter(logdir=vdl_writer_path)
    else:
        vdl_writer = None
    print_dict(config, logger)
    logger.info('train with paddle {} and device {}'.format(paddle.__version__,
                                                            device))
    return config, device, logger, vdl_writer