table_mv3.yml 2.6 KB
Newer Older
M
MissPenguin 已提交
1 2
Global:
  use_gpu: true
M
refine  
MissPenguin 已提交
3
  epoch_num: 50
M
MissPenguin 已提交
4 5 6
  log_smooth_window: 20
  print_batch_step: 5
  save_model_dir: ./output/table_mv3/
M
refine  
MissPenguin 已提交
7 8
  save_epoch_step: 5
  # evaluation is run every 400 iterations after the 0th iteration
M
MissPenguin 已提交
9 10 11 12 13 14 15 16 17 18 19
  eval_batch_step: [0, 400]
  cal_metric_during_train: True
  pretrained_model: 
  checkpoints: 
  save_inference_dir:
  use_visualdl: False
  infer_img: doc/imgs_words/ch/word_1.jpg
  # for data or label process
  character_dict_path: ppocr/utils/dict/table_structure_dict.txt
  character_type: en
  max_text_length: 100
M
refine  
MissPenguin 已提交
20
  max_elem_length: 500
M
MissPenguin 已提交
21 22 23 24 25
  max_cell_num: 500
  infer_mode: False
  process_total_num: 0
  process_cut_num: 0

M
refine  
MissPenguin 已提交
26

M
MissPenguin 已提交
27 28 29 30 31 32
Optimizer:
  name: Adam
  beta1: 0.9
  beta2: 0.999
  clip_norm: 5.0
  lr:
M
refine  
MissPenguin 已提交
33
    learning_rate: 0.001
M
MissPenguin 已提交
34 35 36 37 38 39 40 41 42 43
  regularizer:
    name: 'L2'
    factor: 0.00000

Architecture:
  model_type: table
  algorithm: TableAttn
  Backbone:
    name: MobileNetV3
    scale: 1.0
M
refine  
MissPenguin 已提交
44 45
    model_name: small
    disable_se: True
M
MissPenguin 已提交
46
  Head:
M
refine  
MissPenguin 已提交
47 48
    name: TableAttentionHead
    hidden_size: 256
M
MissPenguin 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
    l2_decay: 0.00001
    loc_type: 2

Loss:
  name: TableAttentionLoss
  structure_weight: 100.0
  loc_weight: 10000.0

PostProcess:
  name: TableLabelDecode

Metric:
  name: TableMetric
  main_indicator: acc

Train:
  dataset:
    name: PubTabDataSet
    data_dir: train_data/table/pubtabnet/train/
    label_file_path: train_data/table/pubtabnet/PubTabNet_2.0.0_train.jsonl
    transforms:
      - DecodeImage: # load image
          img_mode: BGR
          channel_first: False
      - ResizeTableImage:
          max_len: 488
      - TableLabelEncode:
      - NormalizeImage:
          scale: 1./255.
          mean: [0.485, 0.456, 0.406]
          std: [0.229, 0.224, 0.225]
          order: 'hwc'
      - PaddingTableImage:
      - ToCHWImage:
      - KeepKeys:
          keep_keys: ['image', 'structure', 'bbox_list', 'sp_tokens', 'bbox_list_mask']
  loader:
    shuffle: True
    batch_size_per_card: 32
    drop_last: True
M
refine  
MissPenguin 已提交
89
    num_workers: 1
M
MissPenguin 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115

Eval:
  dataset:
    name: PubTabDataSet
    data_dir: train_data/table/pubtabnet/val/
    label_file_path: train_data/table/pubtabnet/PubTabNet_2.0.0_val.jsonl
    transforms:
      - DecodeImage: # load image
          img_mode: BGR
          channel_first: False
      - ResizeTableImage:
          max_len: 488
      - TableLabelEncode:
      - NormalizeImage:
          scale: 1./255.
          mean: [0.485, 0.456, 0.406]
          std: [0.229, 0.224, 0.225]
          order: 'hwc'
      - PaddingTableImage:
      - ToCHWImage:
      - KeepKeys:
          keep_keys: ['image', 'structure', 'bbox_list', 'sp_tokens', 'bbox_list_mask']
  loader:
    shuffle: False
    drop_last: False
    batch_size_per_card: 16
M
refine  
MissPenguin 已提交
116
    num_workers: 1