rec_r34_vd_none_bilstm_ctc.yml 2.3 KB
Newer Older
L
LDOUBLEV 已提交
1
Global:
W
WenmuZhou 已提交
2 3
  use_gpu: false
  epoch_num: 500
L
LDOUBLEV 已提交
4 5
  log_smooth_window: 20
  print_batch_step: 10
W
WenmuZhou 已提交
6 7 8 9 10 11 12 13 14
  save_model_dir: ./output/rec/test/
  save_epoch_step: 500
  # evaluation is run every 5000 iterations after the 4000th iteration
  eval_batch_step: 127
  # if pretrained_model is saved in static mode, load_static_weights must set to True
  load_static_weights: True
  cal_metric_during_train: True
  pretrained_model:
  checkpoints: #output/rec/rec_crnn/best_accuracy
15
  save_inference_dir:
W
WenmuZhou 已提交
16 17 18 19 20 21 22 23 24
  use_visualdl: False
  infer_img: doc/imgs_words/ch/word_1.jpg
  # for data or label process
  max_text_length: 80
  character_dict_path: ppocr/utils/ppocr_keys_v1.txt
  character_type: 'ch'
  use_space_char: False
  infer_mode: False
  use_tps: False
T
tink2123 已提交
25

L
LDOUBLEV 已提交
26 27

Optimizer:
W
WenmuZhou 已提交
28
  name: Adam
L
LDOUBLEV 已提交
29 30
  beta1: 0.9
  beta2: 0.999
W
WenmuZhou 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
  learning_rate:
    name: Cosine
    lr: 0.001
    warmup_epoch: 4
  regularizer:
    name: 'L2'
    factor: 0.00001

Architecture:
  type: rec
  algorithm: CRNN
  Transform:
  Backbone:
    name: ResNet
    layers: 200
  Neck:
    name: SequenceEncoder
    encoder_type: fc
    hidden_size: 96
  Head:
    name: CTC
    fc_decay: 0.00001

Loss:
  name: CTCLoss

PostProcess:
  name: CTCLabelDecode

Metric:
  name: RecMetric
  main_indicator: acc

TRAIN:
  dataset:
    name: SimpleDataSet
    data_dir: /home/zhoujun20/rec
    file_list:
      - /home/zhoujun20/rec/real_data.txt # dataset1
    ratio_list: [ 0.4,0.6 ]
    transforms:
      - DecodeImage: # load image
          img_mode: BGR
          channel_first: False
      - CTCLabelEncode: # Class handling label
      - RecAug:
      - RecResizeImg:
          image_shape: [ 3,32,320 ]
      - keepKeys:
          keep_keys: [ 'image','label','length' ] # dataloader将按照此顺序返回list
  loader:
    batch_size: 256
    shuffle: True
    drop_last: True
    num_workers: 6

EVAL:
  dataset:
    name: SimpleDataSet
    data_dir: /home/zhoujun20/rec
    file_list:
      - /home/zhoujun20/rec/label_val_all.txt
    transforms:
      - DecodeImage: # load image
          img_mode: BGR
          channel_first: False
      - CTCLabelEncode: # Class handling label
      - RecResizeImg:
          image_shape: [ 3,32,320 ]
      - keepKeys:
          keep_keys: [ 'image','label','length' ] # dataloader将按照此顺序返回list
  loader:
    shuffle: False
    drop_last: False
    batch_size: 256
    num_workers: 6