readme_en.md 7.4 KB
Newer Older
L
LDOUBLEV 已提交
1

L
LDOUBLEV 已提交
2
# Tutorial of PaddleOCR Mobile deployment
L
LDOUBLEV 已提交
3 4 5 6 7 8 9 10

This tutorial will introduce how to use paddle-lite to deploy paddleOCR ultra-lightweight Chinese and English detection models on mobile phones.

addle Lite is a lightweight inference engine for PaddlePaddle.
It provides efficient inference capabilities for mobile phones and IOTs,
and extensively integrates cross-platform hardware to provide lightweight
deployment solutions for end-side deployment issues.

L
LDOUBLEV 已提交
11
## 1. Preparation
L
LDOUBLEV 已提交
12

L
LDOUBLEV 已提交
13
- Computer (for Compiling Paddle Lite)
L
LDOUBLEV 已提交
14 15 16 17 18 19
- Mobile phone (arm7 or arm8)

## 2. Build ncnn library
[build for Docker](https://paddle-lite.readthedocs.io/zh/latest/user_guides/source_compile.html#docker)
[build for Linux](https://paddle-lite.readthedocs.io/zh/latest/user_guides/source_compile.html#android)
[build for MAC OS](https://paddle-lite.readthedocs.io/zh/latest/user_guides/source_compile.html#id13)
L
LDOUBLEV 已提交
20
[build for windows](https://paddle-lite.readthedocs.io/zh/latest/demo_guides/x86.html#id4)
L
LDOUBLEV 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34

## 3. Download prebuild library for android and ios

|Platform|Prebuild library Download Link|
|-|-|
|Android|[arm7](https://paddlelite-data.bj.bcebos.com/Release/2.6.1/Android/inference_lite_lib.android.armv7.gcc.c++_static.with_extra.CV_ON.tar.gz) / [arm8](https://paddlelite-data.bj.bcebos.com/Release/2.6.1/Android/inference_lite_lib.android.armv8.gcc.c++_static.with_extra.CV_ON.tar.gz)|
|IOS|[arm7](https://paddlelite-data.bj.bcebos.com/Release/2.6.1/iOS/inference_lite_lib.ios.armv7.with_extra.CV_ON.tar.gz) / [arm8](https://paddlelite-data.bj.bcebos.com/Release/2.6.1/iOS/inference_lite_lib.ios64.armv8.with_extra.CV_ON.tar.gz)|
|x86(Linux)|[预测库](https://paddlelite-data.bj.bcebos.com/Release/2.6.1/X86/Linux/inference_lite_lib.x86.linux.tar.gz)|


The structure of the prediction library is as follows:

```
inference_lite_lib.android.armv8/
L
LDOUBLEV 已提交
35 36
|-- cxx                                        C++ prebuild library
|   |-- include                                C++
L
LDOUBLEV 已提交
37 38 39 40 41 42 43
|   |   |-- paddle_api.h
|   |   |-- paddle_image_preprocess.h
|   |   |-- paddle_lite_factory_helper.h
|   |   |-- paddle_place.h
|   |   |-- paddle_use_kernels.h
|   |   |-- paddle_use_ops.h
|   |   `-- paddle_use_passes.h
L
LDOUBLEV 已提交
44 45 46 47
|   `-- lib  
|       |-- libpaddle_api_light_bundled.a             C++ static library
|       `-- libpaddle_light_api_shared.so             C++ dynamic library
|-- java                                     Java predict library
L
LDOUBLEV 已提交
48 49 50 51 52
|   |-- jar
|   |   `-- PaddlePredictor.jar
|   |-- so
|   |   `-- libpaddle_lite_jni.so
|   `-- src
L
LDOUBLEV 已提交
53 54 55
|-- demo                                     C++ and java demo
|   |-- cxx  
|   `-- java  
L
LDOUBLEV 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
```



## 4. Inference Model Optimization

Paddle Lite provides a variety of strategies to automatically optimize the original training model, including quantization, sub-graph fusion, hybrid scheduling, Kernel optimization and so on. In order to make the optimization process more convenient and easy to use, Paddle Lite provide opt tools to automatically complete the optimization steps and output a lightweight, optimal executable model.

If you use PaddleOCR 8.6M OCR model to deploy, you can directly download the optimized model.


|Introduction|Detection model|Recognition model|Paddle Lite branch |
|-|-|-|-|
|lightweight Chinese OCR optimized model|[Download](https://paddleocr.bj.bcebos.com/deploy/lite/ch_det_mv3_db_opt.nb)|[Download](https://paddleocr.bj.bcebos.com/deploy/lite/ch_rec_mv3_crnn_opt.nb)|develop|

If the model to be deployed is not in the above table, you need to follow the steps below to obtain the optimized model.

```
git clone https://github.com/PaddlePaddle/Paddle-Lite.git
cd Paddle-Lite
git checkout develop
./lite/tools/build.sh build_optimize_tool
```

The `opt` tool can be obtained by compiling Paddle Lite.

After the compilation is complete, the opt file is located under `build.opt/lite/api/`.

The `opt` can optimize the inference model saved by paddle.io.save_inference_model to get the model that the paddlelite API can use.

The usage of opt is as follows:
```
wget  https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db_infer.tar && tar xf ch_det_mv3_db_infer.tar
wget  https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_infer.tar && tar xf ch_rec_mv3_crnn_infer.tar

./opt --model_file=./ch_det_mv3_db/model --param_file=./ch_det_mv3_db/params --optimize_out_type=naive_buffer --optimize_out=./ch_det_mv3_db_opt --valid_targets=arm
./opt --model_file=./ch_rec_mv3_crnn/model --param_file=./ch_rec_mv3_crnn/params --optimize_out_type=naive_buffer --optimize_out=./ch_rec_mv3_crnn_opt --valid_targets=arm

```

When the above code command is completed, there will be two more files `ch_det_mv3_db_opt.nb`,
`ch_rec_mv3_crnn_opt.nb` in the current directory, which is the converted model file.

## 5. Run optimized model on Phone

1. Prepare an Android phone with arm8. If the compiled prediction library and opt file are armv7, you need an arm7 phone and modify ARM_ABI = arm7 in the Makefile.

2. Make sure the phone is connected to the computer, open the USB debugging option of the phone, and select the file transfer mode.

3. Install the adb tool on the computer.
    3.1 Install ADB for MAC
    ```
    brew cask install android-platform-tools
    ```
    3.2 Install ADB for Linux
    ```
    sudo apt update
    sudo apt install -y wget adb
    ```
    3.3 Install ADB for windows
    [Download Link](https://developer.android.com/studio)

    Verify whether adb is installed successfully
    ```
    $ adb devices

    List of devices attached
    744be294    device
    ```

    If there is `device` output, it means the installation was successful.

128
4. Prepare optimized models, prediction library files, test images and dictionary files used.
L
LDOUBLEV 已提交
129 130

```
131 132 133 134
 git clone https://github.com/PaddlePaddle/PaddleOCR.git
 cd PaddleOCR/deploy/lite/
 # run prepare.sh
 sh prepare.sh /{lite prediction library path}/inference_lite_lib.android.armv8
L
LDOUBLEV 已提交
135

136 137 138 139 140 141 142 143
 #
 cd /{lite prediction library path}/inference_lite_lib.android.armv8/
 cd demo/cxx/ocr/
 # copy paddle-lite C++ .so file to debug/ directory
 cp ../../../cxx/lib/libpaddle_light_api_shared.so ./debug/

 cd inference_lite_lib.android.armv8/demo/cxx/ocr/
 cp ../../../cxx/lib/libpaddle_light_api_shared.so ./debug/
L
LDOUBLEV 已提交
144 145 146

```

147 148 149
Prepare the test image, taking `PaddleOCR/doc/imgs/11.jpg` as an example, copy the image file to the `demo/cxx/ocr/debug/` folder.
Prepare the model files optimized by the lite opt tool, `ch_det_mv3_db_opt.nb, ch_rec_mv3_crnn_opt.nb`,
and place them under the `demo/cxx/ocr/debug/` folder.
L
LDOUBLEV 已提交
150 151


152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
The structure of the OCR demo is as follows after the above command is executed:
```
demo/cxx/ocr/
|-- debug/  
|   |--ch_det_mv3_db_opt.nb             Detection model
|   |--ch_rec_mv3_crnn_opt.nb           Recognition model
|   |--11.jpg                           image for OCR
|   |--ppocr_keys_v1.txt                Dictionary file
|   |--libpaddle_light_api_shared.so    C++ .so file
|   |--config.txt                       Config file
|-- config.txt  
|-- crnn_process.cc  
|-- crnn_process.h
|-- db_post_process.cc  
|-- db_post_process.h
|-- Makefile  
|-- ocr_db_crnn.cc  

```
L
LDOUBLEV 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190

5. Run Model on phone

```
cd inference_lite_lib.android.armv8/demo/cxx/ocr/
make -j
mv ocr_db_crnn ./debug/
adb push debug /data/local/tmp/
adb shell
cd /data/local/tmp/debug
export LD_LIBRARY_PATH=/data/local/tmp/debug:$LD_LIBRARY_PATH
# run model
./ocr_db_crnn ch_det_mv3_db_opt.nb  ch_rec_mv3_crnn_opt.nb ./11.jpg  ppocr_keys_v1.txt
```

The outputs are as follows:

<div align="center">
    <img src="../imgs/demo.png" width="600">
</div>