program.py 14.5 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

W
WenmuZhou 已提交
19
import os
L
LDOUBLEV 已提交
20 21 22
import sys
import yaml
import time
W
WenmuZhou 已提交
23 24 25 26 27 28
import shutil
import paddle
import paddle.distributed as dist
from tqdm import tqdm
from argparse import ArgumentParser, RawDescriptionHelpFormatter

L
LDOUBLEV 已提交
29 30
from ppocr.utils.stats import TrainingStats
from ppocr.utils.save_load import save_model
D
dyning 已提交
31 32 33 34
from ppocr.utils.utility import print_dict
from ppocr.utils.logging import get_logger
from ppocr.data import build_dataloader
import numpy as np
L
LDOUBLEV 已提交
35

D
dyning 已提交
36

L
LDOUBLEV 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
class ArgsParser(ArgumentParser):
    def __init__(self):
        super(ArgsParser, self).__init__(
            formatter_class=RawDescriptionHelpFormatter)
        self.add_argument("-c", "--config", help="configuration file to use")
        self.add_argument(
            "-o", "--opt", nargs='+', help="set configuration options")

    def parse_args(self, argv=None):
        args = super(ArgsParser, self).parse_args(argv)
        assert args.config is not None, \
            "Please specify --config=configure_file_path."
        args.opt = self._parse_opt(args.opt)
        return args

    def _parse_opt(self, opts):
        config = {}
        if not opts:
            return config
        for s in opts:
            s = s.strip()
            k, v = s.split('=')
            config[k] = yaml.load(v, Loader=yaml.Loader)
        return config


class AttrDict(dict):
    """Single level attribute dict, NOT recursive"""

    def __init__(self, **kwargs):
        super(AttrDict, self).__init__()
        super(AttrDict, self).update(kwargs)

    def __getattr__(self, key):
        if key in self:
            return self[key]
        raise AttributeError("object has no attribute '{}'".format(key))


global_config = AttrDict()

农夫三拳_'s avatar
农夫三拳_ 已提交
78 79
default_config = {'Global': {'debug': False, }}

L
LDOUBLEV 已提交
80 81 82 83 84 85 86 87

def load_config(file_path):
    """
    Load config from yml/yaml file.
    Args:
        file_path (str): Path of the config file to be loaded.
    Returns: global config
    """
农夫三拳_'s avatar
农夫三拳_ 已提交
88
    merge_config(default_config)
L
LDOUBLEV 已提交
89 90
    _, ext = os.path.splitext(file_path)
    assert ext in ['.yml', '.yaml'], "only support yaml files for now"
W
WenmuZhou 已提交
91
    merge_config(yaml.load(open(file_path, 'rb'), Loader=yaml.Loader))
L
LDOUBLEV 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
    return global_config


def merge_config(config):
    """
    Merge config into global config.
    Args:
        config (dict): Config to be merged.
    Returns: global config
    """
    for key, value in config.items():
        if "." not in key:
            if isinstance(value, dict) and key in global_config:
                global_config[key].update(value)
            else:
                global_config[key] = value
        else:
            sub_keys = key.split('.')
T
tink2123 已提交
110 111 112 113
            assert (
                sub_keys[0] in global_config
            ), "the sub_keys can only be one of global_config: {}, but get: {}, please check your running command".format(
                global_config.keys(), sub_keys[0])
L
LDOUBLEV 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
            cur = global_config[sub_keys[0]]
            for idx, sub_key in enumerate(sub_keys[1:]):
                if idx == len(sub_keys) - 2:
                    cur[sub_key] = value
                else:
                    cur = cur[sub_key]


def check_gpu(use_gpu):
    """
    Log error and exit when set use_gpu=true in paddlepaddle
    cpu version.
    """
    err = "Config use_gpu cannot be set as true while you are " \
          "using paddlepaddle cpu version ! \nPlease try: \n" \
          "\t1. Install paddlepaddle-gpu to run model on GPU \n" \
          "\t2. Set use_gpu as false in config file to run " \
          "model on CPU"

    try:
W
WenmuZhou 已提交
134
        if use_gpu and not paddle.is_compiled_with_cuda():
W
WenmuZhou 已提交
135
            print(err)
L
LDOUBLEV 已提交
136 137 138 139 140
            sys.exit(1)
    except Exception as e:
        pass


W
WenmuZhou 已提交
141
def train(config,
D
dyning 已提交
142 143 144
          train_dataloader,
          valid_dataloader,
          device,
W
WenmuZhou 已提交
145 146 147 148 149 150 151 152 153 154 155
          model,
          loss_class,
          optimizer,
          lr_scheduler,
          post_process_class,
          eval_class,
          pre_best_model_dict,
          logger,
          vdl_writer=None):
    cal_metric_during_train = config['Global'].get('cal_metric_during_train',
                                                   False)
L
LDOUBLEV 已提交
156 157 158 159
    log_smooth_window = config['Global']['log_smooth_window']
    epoch_num = config['Global']['epoch_num']
    print_batch_step = config['Global']['print_batch_step']
    eval_batch_step = config['Global']['eval_batch_step']
W
WenmuZhou 已提交
160

D
dyning 已提交
161
    global_step = 0
L
LDOUBLEV 已提交
162 163 164 165
    start_eval_step = 0
    if type(eval_batch_step) == list and len(eval_batch_step) >= 2:
        start_eval_step = eval_batch_step[0]
        eval_batch_step = eval_batch_step[1]
W
WenmuZhou 已提交
166 167 168 169 170
        if len(valid_dataloader) == 0:
            logger.info(
                'No Images in eval dataset, evaluation during training will be disabled'
            )
            start_eval_step = 1e111
L
LDOUBLEV 已提交
171 172 173
        logger.info(
            "During the training process, after the {}th iteration, an evaluation is run every {} iterations".
            format(start_eval_step, eval_batch_step))
L
LDOUBLEV 已提交
174 175
    save_epoch_step = config['Global']['save_epoch_step']
    save_model_dir = config['Global']['save_model_dir']
176 177
    if not os.path.exists(save_model_dir):
        os.makedirs(save_model_dir)
W
WenmuZhou 已提交
178 179 180 181
    main_indicator = eval_class.main_indicator
    best_model_dict = {main_indicator: 0}
    best_model_dict.update(pre_best_model_dict)
    train_stats = TrainingStats(log_smooth_window, ['lr'])
T
tink2123 已提交
182
    model_average = False
W
WenmuZhou 已提交
183 184
    model.train()

T
tink2123 已提交
185 186
    use_srn = config['Architecture']['algorithm'] == "SRN"

W
WenmuZhou 已提交
187 188 189
    if 'start_epoch' in best_model_dict:
        start_epoch = best_model_dict['start_epoch']
    else:
T
tink2123 已提交
190
        start_epoch = 1
W
WenmuZhou 已提交
191

T
tink2123 已提交
192
    for epoch in range(start_epoch, epoch_num + 1):
193 194
        train_dataloader = build_dataloader(
            config, 'Train', device, logger, seed=epoch)
W
WenmuZhou 已提交
195 196 197 198
        train_batch_cost = 0.0
        train_reader_cost = 0.0
        batch_sum = 0
        batch_start = time.time()
W
WenmuZhou 已提交
199
        for idx, batch in enumerate(train_dataloader):
W
WenmuZhou 已提交
200
            train_reader_cost += time.time() - batch_start
W
WenmuZhou 已提交
201 202 203 204
            if idx >= len(train_dataloader):
                break
            lr = optimizer.get_lr()
            images = batch[0]
T
tink2123 已提交
205
            if use_srn:
T
tink2123 已提交
206 207
                others = batch[-4:]
                preds = model(images, others)
T
tink2123 已提交
208
                model_average = True
T
tink2123 已提交
209 210
            else:
                preds = model(images)
W
WenmuZhou 已提交
211 212
            loss = loss_class(preds, batch)
            avg_loss = loss['loss']
D
dyning 已提交
213
            avg_loss.backward()
W
WenmuZhou 已提交
214 215
            optimizer.step()
            optimizer.clear_grad()
W
WenmuZhou 已提交
216 217 218 219

            train_batch_cost += time.time() - batch_start
            batch_sum += len(images)

D
dyning 已提交
220 221
            if not isinstance(lr_scheduler, float):
                lr_scheduler.step()
W
WenmuZhou 已提交
222 223 224 225 226 227

            # logger and visualdl
            stats = {k: v.numpy().mean() for k, v in loss.items()}
            stats['lr'] = lr
            train_stats.update(stats)

L
LDOUBLEV 已提交
228
            if cal_metric_during_train:  # only rec and cls need
W
WenmuZhou 已提交
229 230 231
                batch = [item.numpy() for item in batch]
                post_result = post_process_class(preds, batch[1])
                eval_class(post_result, batch)
littletomatodonkey's avatar
fix doc  
littletomatodonkey 已提交
232 233
                metric = eval_class.get_metric()
                train_stats.update(metric)
W
WenmuZhou 已提交
234 235 236 237 238 239

            if vdl_writer is not None and dist.get_rank() == 0:
                for k, v in train_stats.get().items():
                    vdl_writer.add_scalar('TRAIN/{}'.format(k), v, global_step)
                vdl_writer.add_scalar('TRAIN/lr', lr, global_step)

D
dyning 已提交
240 241
            if dist.get_rank(
            ) == 0 and global_step > 0 and global_step % print_batch_step == 0:
W
WenmuZhou 已提交
242
                logs = train_stats.log()
W
WenmuZhou 已提交
243
                strs = 'epoch: [{}/{}], iter: {}, {}, reader_cost: {:.5f} s, batch_cost: {:.5f} s, samples: {}, ips: {:.5f}'.format(
W
WenmuZhou 已提交
244 245 246
                    epoch, epoch_num, global_step, logs, train_reader_cost /
                    print_batch_step, train_batch_cost / print_batch_step,
                    batch_sum, batch_sum / train_batch_cost)
W
WenmuZhou 已提交
247
                logger.info(strs)
W
WenmuZhou 已提交
248 249 250
                train_batch_cost = 0.0
                train_reader_cost = 0.0
                batch_sum = 0
W
WenmuZhou 已提交
251 252 253
            # eval
            if global_step > start_eval_step and \
                    (global_step - start_eval_step) % eval_batch_step == 0 and dist.get_rank() == 0:
T
tink2123 已提交
254 255 256 257 258 259 260
                if model_average:
                    Model_Average = paddle.incubate.optimizer.ModelAverage(
                        0.15,
                        parameters=model.parameters(),
                        min_average_window=10000,
                        max_average_window=15625)
                    Model_Average.apply()
T
tink2123 已提交
261 262 263 264 265 266
                cur_metric = eval(
                    model,
                    valid_dataloader,
                    post_process_class,
                    eval_class,
                    use_srn=use_srn)
L
LDOUBLEV 已提交
267 268 269
                cur_metric_str = 'cur metric, {}'.format(', '.join(
                    ['{}: {}'.format(k, v) for k, v in cur_metric.items()]))
                logger.info(cur_metric_str)
W
WenmuZhou 已提交
270 271 272

                # logger metric
                if vdl_writer is not None:
L
LDOUBLEV 已提交
273
                    for k, v in cur_metric.items():
W
WenmuZhou 已提交
274 275
                        if isinstance(v, (float, int)):
                            vdl_writer.add_scalar('EVAL/{}'.format(k),
L
LDOUBLEV 已提交
276 277
                                                  cur_metric[k], global_step)
                if cur_metric[main_indicator] >= best_model_dict[
W
WenmuZhou 已提交
278
                        main_indicator]:
L
LDOUBLEV 已提交
279
                    best_model_dict.update(cur_metric)
W
WenmuZhou 已提交
280 281 282 283 284 285 286 287 288 289
                    best_model_dict['best_epoch'] = epoch
                    save_model(
                        model,
                        optimizer,
                        save_model_dir,
                        logger,
                        is_best=True,
                        prefix='best_accuracy',
                        best_model_dict=best_model_dict,
                        epoch=epoch)
L
LDOUBLEV 已提交
290
                best_str = 'best metric, {}'.format(', '.join([
W
WenmuZhou 已提交
291 292 293 294 295 296 297 298 299
                    '{}: {}'.format(k, v) for k, v in best_model_dict.items()
                ]))
                logger.info(best_str)
                # logger best metric
                if vdl_writer is not None:
                    vdl_writer.add_scalar('EVAL/best_{}'.format(main_indicator),
                                          best_model_dict[main_indicator],
                                          global_step)
            global_step += 1
T
tink2123 已提交
300
            optimizer.clear_grad()
301
            batch_start = time.time()
W
WenmuZhou 已提交
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
        if dist.get_rank() == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
                is_best=False,
                prefix='latest',
                best_model_dict=best_model_dict,
                epoch=epoch)
        if dist.get_rank() == 0 and epoch > 0 and epoch % save_epoch_step == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
                is_best=False,
                prefix='iter_epoch_{}'.format(epoch),
                best_model_dict=best_model_dict,
                epoch=epoch)
L
LDOUBLEV 已提交
322
    best_str = 'best metric, {}'.format(', '.join(
W
WenmuZhou 已提交
323 324 325 326
        ['{}: {}'.format(k, v) for k, v in best_model_dict.items()]))
    logger.info(best_str)
    if dist.get_rank() == 0 and vdl_writer is not None:
        vdl_writer.close()
L
LDOUBLEV 已提交
327 328 329
    return


T
tink2123 已提交
330 331
def eval(model, valid_dataloader, post_process_class, eval_class,
         use_srn=False):
W
WenmuZhou 已提交
332 333 334 335
    model.eval()
    with paddle.no_grad():
        total_frame = 0.0
        total_time = 0.0
W
fix bug  
WenmuZhou 已提交
336
        pbar = tqdm(total=len(valid_dataloader), desc='eval model:')
W
WenmuZhou 已提交
337 338 339
        for idx, batch in enumerate(valid_dataloader):
            if idx >= len(valid_dataloader):
                break
W
fix bug  
WenmuZhou 已提交
340
            images = batch[0]
W
WenmuZhou 已提交
341
            start = time.time()
T
tink2123 已提交
342 343

            if use_srn:
X
xiaoting 已提交
344 345 346 347
                others = batch[-4:]
                preds = model(images, others)
            else:
                preds = model(images)
W
WenmuZhou 已提交
348 349 350 351 352 353 354

            batch = [item.numpy() for item in batch]
            # Obtain usable results from post-processing methods
            post_result = post_process_class(preds, batch[1])
            total_time += time.time() - start
            # Evaluate the results of the current batch
            eval_class(post_result, batch)
W
fix bug  
WenmuZhou 已提交
355
            pbar.update(1)
W
WenmuZhou 已提交
356
            total_frame += len(images)
L
LDOUBLEV 已提交
357 358
        # Get final metric,eg. acc or hmean
        metric = eval_class.get_metric()
D
dyning 已提交
359

W
fix bug  
WenmuZhou 已提交
360
    pbar.close()
W
WenmuZhou 已提交
361
    model.train()
L
LDOUBLEV 已提交
362 363
    metric['fps'] = total_frame / total_time
    return metric
L
licx 已提交
364

T
tink2123 已提交
365

366
def preprocess(is_train=False):
L
licx 已提交
367 368 369 370 371 372 373 374
    FLAGS = ArgsParser().parse_args()
    config = load_config(FLAGS.config)
    merge_config(FLAGS.opt)

    # check if set use_gpu=True in paddlepaddle cpu version
    use_gpu = config['Global']['use_gpu']
    check_gpu(use_gpu)

W
WenmuZhou 已提交
375 376
    alg = config['Architecture']['algorithm']
    assert alg in [
W
WenmuZhou 已提交
377
        'EAST', 'DB', 'SAST', 'Rosetta', 'CRNN', 'STARNet', 'RARE', 'SRN', 'CLS'
W
WenmuZhou 已提交
378
    ]
L
licx 已提交
379

W
WenmuZhou 已提交
380 381
    device = 'gpu:{}'.format(dist.ParallelEnv().dev_id) if use_gpu else 'cpu'
    device = paddle.set_device(device)
D
dyning 已提交
382

D
dyning 已提交
383
    config['Global']['distributed'] = dist.get_world_size() != 1
384 385 386 387 388 389 390 391 392 393 394
    if is_train:
        # save_config
        save_model_dir = config['Global']['save_model_dir']
        os.makedirs(save_model_dir, exist_ok=True)
        with open(os.path.join(save_model_dir, 'config.yml'), 'w') as f:
            yaml.dump(
                dict(config), f, default_flow_style=False, sort_keys=False)
        log_file = '{}/train.log'.format(save_model_dir)
    else:
        log_file = None
    logger = get_logger(name='root', log_file=log_file)
D
dyning 已提交
395 396 397 398 399 400 401 402 403 404 405
    if config['Global']['use_visualdl']:
        from visualdl import LogWriter
        vdl_writer_path = '{}/vdl/'.format(save_model_dir)
        os.makedirs(vdl_writer_path, exist_ok=True)
        vdl_writer = LogWriter(logdir=vdl_writer_path)
    else:
        vdl_writer = None
    print_dict(config, logger)
    logger.info('train with paddle {} and device {}'.format(paddle.__version__,
                                                            device))
    return config, device, logger, vdl_writer