server.py 2.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
import fastdeploy as fd
from fastdeploy.serving.server import SimpleServer
import os
import logging

logging.getLogger().setLevel(logging.INFO)

# Configurations
det_model_dir = 'ch_PP-OCRv3_det_infer'
cls_model_dir = 'ch_ppocr_mobile_v2.0_cls_infer'
rec_model_dir = 'ch_PP-OCRv3_rec_infer'
rec_label_file = 'ppocr_keys_v1.txt'
device = 'cpu'
# backend: ['paddle', 'trt'], you can also use other backends, but need to modify
# the runtime option below
backend = 'paddle'

# Prepare models
# Detection model
det_model_file = os.path.join(det_model_dir, "inference.pdmodel")
det_params_file = os.path.join(det_model_dir, "inference.pdiparams")
# Classification model
cls_model_file = os.path.join(cls_model_dir, "inference.pdmodel")
cls_params_file = os.path.join(cls_model_dir, "inference.pdiparams")
# Recognition model
rec_model_file = os.path.join(rec_model_dir, "inference.pdmodel")
rec_params_file = os.path.join(rec_model_dir, "inference.pdiparams")

# Setup runtime option to select hardware, backend, etc.
option = fd.RuntimeOption()
if device.lower() == 'gpu':
    option.use_gpu()
if backend == 'trt':
    option.use_trt_backend()
else:
    option.use_paddle_infer_backend()

det_option = option
det_option.set_trt_input_shape("x", [1, 3, 64, 64], [1, 3, 640, 640],
                               [1, 3, 960, 960])

# det_option.set_trt_cache_file("det_trt_cache.trt")
print(det_model_file, det_params_file)
det_model = fd.vision.ocr.DBDetector(
    det_model_file, det_params_file, runtime_option=det_option)

cls_batch_size = 1
rec_batch_size = 6

cls_option = option
cls_option.set_trt_input_shape("x", [1, 3, 48, 10],
                               [cls_batch_size, 3, 48, 320],
                               [cls_batch_size, 3, 48, 1024])

# cls_option.set_trt_cache_file("cls_trt_cache.trt")
cls_model = fd.vision.ocr.Classifier(
    cls_model_file, cls_params_file, runtime_option=cls_option)

rec_option = option
rec_option.set_trt_input_shape("x", [1, 3, 48, 10],
                               [rec_batch_size, 3, 48, 320],
                               [rec_batch_size, 3, 48, 2304])

# rec_option.set_trt_cache_file("rec_trt_cache.trt")
rec_model = fd.vision.ocr.Recognizer(
    rec_model_file, rec_params_file, rec_label_file, runtime_option=rec_option)

# Create PPOCRv3 pipeline
ppocr_v3 = fd.vision.ocr.PPOCRv3(
    det_model=det_model, cls_model=cls_model, rec_model=rec_model)

ppocr_v3.cls_batch_size = cls_batch_size
ppocr_v3.rec_batch_size = rec_batch_size

# Create server, setup REST API
app = SimpleServer()
app.register(
    task_name="fd/ppocrv3",
    model_handler=fd.serving.handler.VisionModelHandler,
    predictor=ppocr_v3)