quickstart_en.md 11.6 KB
Newer Older
文幕地方's avatar
文幕地方 已提交
1 2
# PP-Structure Quick Start

文幕地方's avatar
文幕地方 已提交
3 4 5
- [1. Install package](#1-install-package)
- [2. Use](#2-use)
  - [2.1 Use by command line](#21-use-by-command-line)
6 7 8 9
    - [2.1.1 image orientation + layout analysis + table recognition](#211-image-orientation--layout-analysis--table-recognition)
    - [2.1.2 layout analysis + table recognition](#212-layout-analysis--table-recognition)
    - [2.1.3 layout analysis](#213-layout-analysis)
    - [2.1.4 table recognition](#214-table-recognition)
littletomatodonkey's avatar
littletomatodonkey 已提交
10
    - [2.1.5 Key Information Extraction](#215-Key-Information-Extraction)
A
an1018 已提交
11
    - [2.1.6 layout recovery](#216-layout-recovery)
文幕地方's avatar
文幕地方 已提交
12
  - [2.2 Use by code](#22-use-by-code)
13 14 15 16
    - [2.2.1 image orientation + layout analysis + table recognition](#221-image-orientation--layout-analysis--table-recognition)
    - [2.2.2 layout analysis + table recognition](#222-layout-analysis--table-recognition)
    - [2.2.3 layout analysis](#223-layout-analysis)
    - [2.2.4 table recognition](#224-table-recognition)
17
    - [2.2.5 DocVQA](#225-dockie)
littletomatodonkey's avatar
littletomatodonkey 已提交
18
    - [2.2.5 Key Information Extraction](#225-Key-Information-Extraction)
A
an1018 已提交
19
    - [2.2.6 layout recovery](#226-layout-recovery)  
文幕地方's avatar
文幕地方 已提交
20 21
  - [2.3 Result description](#23-result-description)
    - [2.3.1 layout analysis + table recognition](#231-layout-analysis--table-recognition)
littletomatodonkey's avatar
littletomatodonkey 已提交
22
    - [2.3.2 Key Information Extraction](#232-Key-Information-Extraction)
文幕地方's avatar
文幕地方 已提交
23
  - [2.4 Parameter Description](#24-parameter-description)
M
update  
MissPenguin 已提交
24 25 26


<a name="1"></a>
文幕地方's avatar
文幕地方 已提交
27
## 1. Install package
M
update  
MissPenguin 已提交
28 29

```bash
A
an1018 已提交
30 31
# Install paddleocr, version 2.6 is recommended
pip3 install "paddleocr>=2.6"
A
an1018 已提交
32

A
an1018 已提交
33 34
# Install the image direction classification dependency package paddleclas (if you do not use the image direction classification, you can skip it)
pip3 install paddleclas
A
an1018 已提交
35 36 37 38 39 40 41 42

# Install the KIE dependency packages (if you do not use the KIE, you can skip it)
pip3 install -r ppstructure/kie/requirements.txt

# Install the layout recovery dependency packages (if you do not use the layout recovery, you can skip it)
pip3 install -r ppstructure/recovery/requirements.txt


M
update  
MissPenguin 已提交
43 44 45
```

<a name="2"></a>
A
an1018 已提交
46

文幕地方's avatar
文幕地方 已提交
47
## 2. Use
M
update  
MissPenguin 已提交
48 49

<a name="21"></a>
文幕地方's avatar
文幕地方 已提交
50
### 2.1 Use by command line
51

M
update  
MissPenguin 已提交
52
<a name="211"></a>
53
#### 2.1.1 image orientation + layout analysis + table recognition
M
update  
MissPenguin 已提交
54
```bash
55
paddleocr --image_dir=PaddleOCR/ppstructure/docs/table/1.png --type=structure --image_orientation=true
M
update  
MissPenguin 已提交
56 57 58
```

<a name="212"></a>
59
#### 2.1.2 layout analysis + table recognition
60
```bash
61
paddleocr --image_dir=PaddleOCR/ppstructure/docs/table/1.png --type=structure
62 63 64
```

<a name="213"></a>
65
#### 2.1.3 layout analysis
66
```bash
67
paddleocr --image_dir=PaddleOCR/ppstructure/docs/table/1.png --type=structure --table=false --ocr=false
68 69 70
```

<a name="214"></a>
71 72 73 74 75 76
#### 2.1.4 table recognition
```bash
paddleocr --image_dir=PaddleOCR/ppstructure/docs/table/table.jpg --type=structure --layout=false
```

<a name="215"></a>
littletomatodonkey's avatar
littletomatodonkey 已提交
77
#### 2.1.5 Key Information Extraction
M
update  
MissPenguin 已提交
78

littletomatodonkey's avatar
littletomatodonkey 已提交
79
Please refer to: [Key Information Extraction](../kie/README.md) .
M
update  
MissPenguin 已提交
80

A
an1018 已提交
81 82
<a name="216"></a>
#### 2.1.6 layout recovery
A
an1018 已提交
83 84
```
# Chinese pic
A
an1018 已提交
85
paddleocr --image_dir=PaddleOCR/ppstructure/docs/table/1.png --type=structure --recovery=true
A
an1018 已提交
86 87
# English pic
paddleocr --image_dir=PaddleOCR/ppstructure/docs/table/1.png --type=structure --recovery=true --lang='en'
A
an1018 已提交
88 89
# pdf file
paddleocr --image_dir=ppstructure/recovery/UnrealText.pdf --type=structure --recovery=true --lang='en'
A
an1018 已提交
90 91
```

M
update  
MissPenguin 已提交
92
<a name="22"></a>
文幕地方's avatar
文幕地方 已提交
93
### 2.2 Use by code
M
update  
MissPenguin 已提交
94 95

<a name="221"></a>
96
#### 2.2.1 image orientation + layout analysis + table recognition
M
update  
MissPenguin 已提交
97 98 99 100 101 102

```python
import os
import cv2
from paddleocr import PPStructure,draw_structure_result,save_structure_res

103
table_engine = PPStructure(show_log=True, image_orientation=True)
M
update  
MissPenguin 已提交
104

105 106
save_folder = './output'
img_path = 'PaddleOCR/ppstructure/docs/table/1.png'
M
update  
MissPenguin 已提交
107 108 109 110 111 112 113 114 115 116
img = cv2.imread(img_path)
result = table_engine(img)
save_structure_res(result, save_folder,os.path.basename(img_path).split('.')[0])

for line in result:
    line.pop('img')
    print(line)

from PIL import Image

117
font_path = 'PaddleOCR/doc/fonts/simfang.ttf' # PaddleOCR下提供字体包
M
update  
MissPenguin 已提交
118 119 120 121 122 123 124
image = Image.open(img_path).convert('RGB')
im_show = draw_structure_result(image, result,font_path=font_path)
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```

<a name="222"></a>
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
#### 2.2.2 layout analysis + table recognition

```python
import os
import cv2
from paddleocr import PPStructure,draw_structure_result,save_structure_res

table_engine = PPStructure(show_log=True)

save_folder = './output'
img_path = 'PaddleOCR/ppstructure/docs/table/1.png'
img = cv2.imread(img_path)
result = table_engine(img)
save_structure_res(result, save_folder,os.path.basename(img_path).split('.')[0])

for line in result:
    line.pop('img')
    print(line)

from PIL import Image

littletomatodonkey's avatar
littletomatodonkey 已提交
146
font_path = 'PaddleOCR/doc/fonts/simfang.ttf' # font provieded in PaddleOCR
147 148 149 150 151 152 153 154
image = Image.open(img_path).convert('RGB')
im_show = draw_structure_result(image, result,font_path=font_path)
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```

<a name="223"></a>
#### 2.2.3 layout analysis
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173

```python
import os
import cv2
from paddleocr import PPStructure,save_structure_res

table_engine = PPStructure(table=False, ocr=False, show_log=True)

save_folder = './output'
img_path = 'PaddleOCR/ppstructure/docs/table/1.png'
img = cv2.imread(img_path)
result = table_engine(img)
save_structure_res(result, save_folder, os.path.basename(img_path).split('.')[0])

for line in result:
    line.pop('img')
    print(line)
```

174 175
<a name="224"></a>
#### 2.2.4 table recognition
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194

```python
import os
import cv2
from paddleocr import PPStructure,save_structure_res

table_engine = PPStructure(layout=False, show_log=True)

save_folder = './output'
img_path = 'PaddleOCR/ppstructure/docs/table/table.jpg'
img = cv2.imread(img_path)
result = table_engine(img)
save_structure_res(result, save_folder, os.path.basename(img_path).split('.')[0])

for line in result:
    line.pop('img')
    print(line)
```

195
<a name="225"></a>
littletomatodonkey's avatar
littletomatodonkey 已提交
196
#### 2.2.5 Key Information Extraction
M
update  
MissPenguin 已提交
197

littletomatodonkey's avatar
littletomatodonkey 已提交
198
Please refer to: [Key Information Extraction](../kie/README.md) .
M
update  
MissPenguin 已提交
199

A
an1018 已提交
200 201 202 203 204 205 206
<a name="226"></a>
#### 2.2.6 layout recovery

```python
import os
import cv2
from paddleocr import PPStructure,save_structure_res
A
an1018 已提交
207
from paddleocr.ppstructure.recovery.recovery_to_doc import sorted_layout_boxes, convert_info_docx
A
an1018 已提交
208

A
an1018 已提交
209 210 211 212
# Chinese image
table_engine = PPStructure(recovery=True)
# English image
# table_engine = PPStructure(recovery=True, lang='en')
A
an1018 已提交
213 214

save_folder = './output'
A
an1018 已提交
215
img_path = 'ppstructure/docs/table/1.png'
A
an1018 已提交
216 217 218 219 220 221 222 223 224
img = cv2.imread(img_path)
result = table_engine(img)
save_structure_res(result, save_folder, os.path.basename(img_path).split('.')[0])

for line in result:
    line.pop('img')
    print(line)

h, w, _ = img.shape
A
an1018 已提交
225 226
res = sorted_layout_boxes(result, w)
convert_info_docx(img, res, save_folder, os.path.basename(img_path).split('.')[0])
A
an1018 已提交
227 228
```

M
update  
MissPenguin 已提交
229
<a name="23"></a>
文幕地方's avatar
文幕地方 已提交
230 231 232
### 2.3 Result description

The return of PP-Structure is a list of dicts, the example is as follows:
M
update  
MissPenguin 已提交
233 234

<a name="231"></a>
文幕地方's avatar
文幕地方 已提交
235
#### 2.3.1 layout analysis + table recognition
M
update  
MissPenguin 已提交
236 237 238 239 240 241 242 243 244
```shell
[
  {   'type': 'Text',
      'bbox': [34, 432, 345, 462],
      'res': ([[36.0, 437.0, 341.0, 437.0, 341.0, 446.0, 36.0, 447.0], [41.0, 454.0, 125.0, 453.0, 125.0, 459.0, 41.0, 460.0]],
                [('Tigure-6. The performance of CNN and IPT models using difforen', 0.90060663), ('Tent  ', 0.465441)])
  }
]
```
文幕地方's avatar
文幕地方 已提交
245
Each field in dict is described as follows:
M
update  
MissPenguin 已提交
246

247 248
| field | description  |
| --- |---|
文幕地方's avatar
文幕地方 已提交
249 250 251
|type| Type of image area.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|bbox| The coordinates of the image area in the original image, respectively [upper left corner x, upper left corner y, lower right corner x, lower right corner y].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|res| OCR or table recognition result of the image area. <br> table: a dict with field descriptions as follows: <br>&emsp;&emsp;&emsp;&emsp;&emsp;&emsp;&emsp; `html`: html str of table.<br>&emsp;&emsp;&emsp;&emsp;&emsp;&emsp;&emsp; In the code usage mode, set return_ocr_result_in_table=True whrn call can get the detection and recognition results of each text in the table area, corresponding to the following fields: <br>&emsp;&emsp;&emsp;&emsp;&emsp;&emsp;&emsp; `boxes`: text detection boxes.<br>&emsp;&emsp;&emsp;&emsp;&emsp;&emsp;&emsp; `rec_res`: text recognition results.<br> OCR: A tuple containing the detection boxes and recognition results of each single text. |
M
update  
MissPenguin 已提交
252

文幕地方's avatar
文幕地方 已提交
253
After the recognition is completed, each image will have a directory with the same name under the directory specified by the `output` field. Each table in the image will be stored as an excel, and the picture area will be cropped and saved. The filename of  excel and picture is their coordinates in the image.
M
update  
MissPenguin 已提交
254 255 256
  ```
  /output/table/1/
    └─ res.txt
文幕地方's avatar
文幕地方 已提交
257 258 259
    └─ [454, 360, 824, 658].xlsx        table recognition result
    └─ [16, 2, 828, 305].jpg            picture in Image
    └─ [17, 361, 404, 711].xlsx        table recognition result
M
update  
MissPenguin 已提交
260 261 262
  ```

<a name="232"></a>
littletomatodonkey's avatar
littletomatodonkey 已提交
263
#### 2.3.2 Key Information Extraction
M
update  
MissPenguin 已提交
264

littletomatodonkey's avatar
littletomatodonkey 已提交
265
Please refer to: [Key Information Extraction](../kie/README.md) .
M
update  
MissPenguin 已提交
266 267

<a name="24"></a>
文幕地方's avatar
文幕地方 已提交
268 269
### 2.4 Parameter Description

270 271 272 273 274 275 276 277 278 279 280
| field | description | default |
|---|---|---|
| output | result save path | ./output/table |
| table_max_len | long side of the image resize in table structure model | 488 |
| table_model_dir | Table structure model inference model path| None |
| table_char_dict_path | The dictionary path of table structure model | ../ppocr/utils/dict/table_structure_dict.txt  |
| merge_no_span_structure | In the table recognition model, whether to merge '\<td>' and '\</td>' | False |
| layout_model_dir  | Layout analysis model inference model path| None |
| layout_dict_path  | The dictionary path of layout analysis model| ../ppocr/utils/dict/layout_publaynet_dict.txt |
| layout_score_threshold  | The box threshold path of layout analysis model| 0.5|
| layout_nms_threshold  | The nms threshold path of layout analysis model| 0.5|
281
| kie_algorithm  | kie model algorithm| LayoutXLM|
282 283
| ser_model_dir  | Ser model inference model path| None|
| ser_dict_path  | The dictionary path of Ser model| ../train_data/XFUND/class_list_xfun.txt|
284
| mode | structure or kie  | structure   |
285 286 287 288 289
| image_orientation | Whether to perform image orientation classification in forward  | False   |
| layout | Whether to perform layout analysis in forward  | True   |
| table  | Whether to perform table recognition in forward  | True   |
| ocr    | Whether to perform ocr for non-table areas in layout analysis. When layout is False, it will be automatically set to False| True |
| recovery    | Whether to perform layout recovery in forward| False |
A
an1018 已提交
290
| save_pdf    | Whether to convert docx to pdf when recovery| False |
291 292
| structure_version |  Structure version, optional PP-structure and PP-structurev2  | PP-structure |

文幕地方's avatar
文幕地方 已提交
293
Most of the parameters are consistent with the PaddleOCR whl package, see [whl package documentation](../../doc/doc_en/whl.md)