rec_svtrnet.py 19.5 KB
Newer Older
A
andyjpaddle 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle import ParamAttr
from paddle.nn.initializer import KaimingNormal
import numpy as np
import paddle
import paddle.nn as nn
from paddle.nn.initializer import TruncatedNormal, Constant, Normal

trunc_normal_ = TruncatedNormal(std=.02)
normal_ = Normal
zeros_ = Constant(value=0.)
ones_ = Constant(value=1.)


def drop_path(x, drop_prob=0., training=False):
    """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
    the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
    See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ...
    """
    if drop_prob == 0. or not training:
        return x
    keep_prob = paddle.to_tensor(1 - drop_prob)
    shape = (paddle.shape(x)[0], ) + (1, ) * (x.ndim - 1)
    random_tensor = keep_prob + paddle.rand(shape, dtype=x.dtype)
    random_tensor = paddle.floor(random_tensor)  # binarize
    output = x.divide(keep_prob) * random_tensor
    return output


class ConvBNLayer(nn.Layer):
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size=3,
                 stride=1,
                 padding=0,
                 bias_attr=False,
                 groups=1,
                 act=nn.GELU):
        super().__init__()
        self.conv = nn.Conv2D(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=kernel_size,
            stride=stride,
            padding=padding,
            groups=groups,
            weight_attr=paddle.ParamAttr(
                initializer=nn.initializer.KaimingUniform()),
            bias_attr=bias_attr)
        self.norm = nn.BatchNorm2D(out_channels)
        self.act = act()

    def forward(self, inputs):
        out = self.conv(inputs)
        out = self.norm(out)
        out = self.act(out)
        return out


class DropPath(nn.Layer):
    """Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks).
    """

    def __init__(self, drop_prob=None):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

    def forward(self, x):
        return drop_path(x, self.drop_prob, self.training)


class Identity(nn.Layer):
    def __init__(self):
        super(Identity, self).__init__()

    def forward(self, input):
        return input


class Mlp(nn.Layer):
    def __init__(self,
                 in_features,
                 hidden_features=None,
                 out_features=None,
                 act_layer=nn.GELU,
                 drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


class ConvMixer(nn.Layer):
    def __init__(
            self,
            dim,
            num_heads=8,
            HW=[8, 25],
            local_k=[3, 3], ):
        super().__init__()
        self.HW = HW
        self.dim = dim
        self.local_mixer = nn.Conv2D(
            dim,
            dim,
            local_k,
            1, [local_k[0] // 2, local_k[1] // 2],
            groups=num_heads,
            weight_attr=ParamAttr(initializer=KaimingNormal()))

    def forward(self, x):
        h = self.HW[0]
        w = self.HW[1]
        x = x.transpose([0, 2, 1]).reshape([0, self.dim, h, w])
        x = self.local_mixer(x)
        x = x.flatten(2).transpose([0, 2, 1])
        return x


class Attention(nn.Layer):
    def __init__(self,
                 dim,
                 num_heads=8,
                 mixer='Global',
                 HW=[8, 25],
                 local_k=[7, 11],
                 qkv_bias=False,
                 qk_scale=None,
                 attn_drop=0.,
                 proj_drop=0.):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim**-0.5

        self.qkv = nn.Linear(dim, dim * 3, bias_attr=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)
        self.HW = HW
        if HW is not None:
            H = HW[0]
            W = HW[1]
            self.N = H * W
            self.C = dim
        if mixer == 'Local' and HW is not None:

            hk = local_k[0]
            wk = local_k[1]
            mask = np.ones([H * W, H * W])
            for h in range(H):
                for w in range(W):
                    for kh in range(-(hk // 2), (hk // 2) + 1):
                        for kw in range(-(wk // 2), (wk // 2) + 1):
                            if H > (h + kh) >= 0 and W > (w + kw) >= 0:
                                mask[h * W + w][(h + kh) * W + (w + kw)] = 0
            mask_paddle = paddle.to_tensor(mask, dtype='float32')
            mask_inf = paddle.full([H * W, H * W], '-inf', dtype='float32')
            mask = paddle.where(mask_paddle < 1, mask_paddle, mask_inf)
            self.mask = mask.unsqueeze([0, 1])
        self.mixer = mixer

    def forward(self, x):
        if self.HW is not None:
            N = self.N
            C = self.C
        else:
            _, N, C = x.shape
        qkv = self.qkv(x).reshape((0, N, 3, self.num_heads, C //
                                   self.num_heads)).transpose((2, 0, 3, 1, 4))
        q, k, v = qkv[0] * self.scale, qkv[1], qkv[2]

        attn = (q.matmul(k.transpose((0, 1, 3, 2))))
        if self.mixer == 'Local':
            attn += self.mask
        attn = nn.functional.softmax(attn, axis=-1)
        attn = self.attn_drop(attn)

        x = (attn.matmul(v)).transpose((0, 2, 1, 3)).reshape((0, N, C))
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class Block(nn.Layer):
    def __init__(self,
                 dim,
                 num_heads,
                 mixer='Global',
                 local_mixer=[7, 11],
                 HW=[8, 25],
                 mlp_ratio=4.,
                 qkv_bias=False,
                 qk_scale=None,
                 drop=0.,
                 attn_drop=0.,
                 drop_path=0.,
                 act_layer=nn.GELU,
                 norm_layer='nn.LayerNorm',
                 epsilon=1e-6,
                 prenorm=True):
        super().__init__()
        if isinstance(norm_layer, str):
            self.norm1 = eval(norm_layer)(dim, epsilon=epsilon)
        else:
T
Topdu 已提交
231
            self.norm1 = norm_layer(dim)
A
andyjpaddle 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
        if mixer == 'Global' or mixer == 'Local':
            self.mixer = Attention(
                dim,
                num_heads=num_heads,
                mixer=mixer,
                HW=HW,
                local_k=local_mixer,
                qkv_bias=qkv_bias,
                qk_scale=qk_scale,
                attn_drop=attn_drop,
                proj_drop=drop)
        elif mixer == 'Conv':
            self.mixer = ConvMixer(
                dim, num_heads=num_heads, HW=HW, local_k=local_mixer)
        else:
            raise TypeError("The mixer must be one of [Global, Local, Conv]")

        self.drop_path = DropPath(drop_path) if drop_path > 0. else Identity()
        if isinstance(norm_layer, str):
            self.norm2 = eval(norm_layer)(dim, epsilon=epsilon)
        else:
T
Topdu 已提交
253
            self.norm2 = norm_layer(dim)
A
andyjpaddle 已提交
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp_ratio = mlp_ratio
        self.mlp = Mlp(in_features=dim,
                       hidden_features=mlp_hidden_dim,
                       act_layer=act_layer,
                       drop=drop)
        self.prenorm = prenorm

    def forward(self, x):
        if self.prenorm:
            x = self.norm1(x + self.drop_path(self.mixer(x)))
            x = self.norm2(x + self.drop_path(self.mlp(x)))
        else:
            x = x + self.drop_path(self.mixer(self.norm1(x)))
            x = x + self.drop_path(self.mlp(self.norm2(x)))
        return x


class PatchEmbed(nn.Layer):
    """ Image to Patch Embedding
    """

    def __init__(self,
                 img_size=[32, 100],
                 in_channels=3,
                 embed_dim=768,
                 sub_num=2):
        super().__init__()
        num_patches = (img_size[1] // (2 ** sub_num)) * \
                      (img_size[0] // (2 ** sub_num))
        self.img_size = img_size
        self.num_patches = num_patches
        self.embed_dim = embed_dim
        self.norm = None
        if sub_num == 2:
            self.proj = nn.Sequential(
                ConvBNLayer(
T
Topdu 已提交
291 292 293 294 295
                    in_channels=in_channels,
                    out_channels=embed_dim // 2,
                    kernel_size=3,
                    stride=2,
                    padding=1,
A
andyjpaddle 已提交
296 297 298
                    act=nn.GELU,
                    bias_attr=None),
                ConvBNLayer(
T
Topdu 已提交
299 300 301 302 303
                    in_channels=embed_dim // 2,
                    out_channels=embed_dim,
                    kernel_size=3,
                    stride=2,
                    padding=1,
A
andyjpaddle 已提交
304 305 306 307 308
                    act=nn.GELU,
                    bias_attr=None))
        if sub_num == 3:
            self.proj = nn.Sequential(
                ConvBNLayer(
T
Topdu 已提交
309 310 311 312 313
                    in_channels=in_channels,
                    out_channels=embed_dim // 4,
                    kernel_size=3,
                    stride=2,
                    padding=1,
A
andyjpaddle 已提交
314 315 316
                    act=nn.GELU,
                    bias_attr=None),
                ConvBNLayer(
T
Topdu 已提交
317 318 319 320 321
                    in_channels=embed_dim // 4,
                    out_channels=embed_dim // 2,
                    kernel_size=3,
                    stride=2,
                    padding=1,
A
andyjpaddle 已提交
322 323 324
                    act=nn.GELU,
                    bias_attr=None),
                ConvBNLayer(
T
Topdu 已提交
325 326 327 328 329
                    in_channels=embed_dim // 2,
                    out_channels=embed_dim,
                    kernel_size=3,
                    stride=2,
                    padding=1,
A
andyjpaddle 已提交
330
                    act=nn.GELU,
T
Topdu 已提交
331
                    bias_attr=None))
A
andyjpaddle 已提交
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449

    def forward(self, x):
        B, C, H, W = x.shape
        assert H == self.img_size[0] and W == self.img_size[1], \
            f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
        x = self.proj(x).flatten(2).transpose((0, 2, 1))
        return x


class SubSample(nn.Layer):
    def __init__(self,
                 in_channels,
                 out_channels,
                 types='Pool',
                 stride=[2, 1],
                 sub_norm='nn.LayerNorm',
                 act=None):
        super().__init__()
        self.types = types
        if types == 'Pool':
            self.avgpool = nn.AvgPool2D(
                kernel_size=[3, 5], stride=stride, padding=[1, 2])
            self.maxpool = nn.MaxPool2D(
                kernel_size=[3, 5], stride=stride, padding=[1, 2])
            self.proj = nn.Linear(in_channels, out_channels)
        else:
            self.conv = nn.Conv2D(
                in_channels,
                out_channels,
                kernel_size=3,
                stride=stride,
                padding=1,
                weight_attr=ParamAttr(initializer=KaimingNormal()))
        self.norm = eval(sub_norm)(out_channels)
        if act is not None:
            self.act = act()
        else:
            self.act = None

    def forward(self, x):

        if self.types == 'Pool':
            x1 = self.avgpool(x)
            x2 = self.maxpool(x)
            x = (x1 + x2) * 0.5
            out = self.proj(x.flatten(2).transpose((0, 2, 1)))
        else:
            x = self.conv(x)
            out = x.flatten(2).transpose((0, 2, 1))
        out = self.norm(out)
        if self.act is not None:
            out = self.act(out)

        return out


class SVTRNet(nn.Layer):
    def __init__(
            self,
            img_size=[32, 100],
            in_channels=3,
            embed_dim=[64, 128, 256],
            depth=[3, 6, 3],
            num_heads=[2, 4, 8],
            mixer=['Local'] * 6 + ['Global'] *
            6,  # Local atten, Global atten, Conv
            local_mixer=[[7, 11], [7, 11], [7, 11]],
            patch_merging='Conv',  # Conv, Pool, None
            mlp_ratio=4,
            qkv_bias=True,
            qk_scale=None,
            drop_rate=0.,
            last_drop=0.1,
            attn_drop_rate=0.,
            drop_path_rate=0.1,
            norm_layer='nn.LayerNorm',
            sub_norm='nn.LayerNorm',
            epsilon=1e-6,
            out_channels=192,
            out_char_num=25,
            block_unit='Block',
            act='nn.GELU',
            last_stage=True,
            sub_num=2,
            prenorm=True,
            use_lenhead=False,
            **kwargs):
        super().__init__()
        self.img_size = img_size
        self.embed_dim = embed_dim
        self.out_channels = out_channels
        self.prenorm = prenorm
        patch_merging = None if patch_merging != 'Conv' and patch_merging != 'Pool' else patch_merging
        self.patch_embed = PatchEmbed(
            img_size=img_size,
            in_channels=in_channels,
            embed_dim=embed_dim[0],
            sub_num=sub_num)
        num_patches = self.patch_embed.num_patches
        self.HW = [img_size[0] // (2**sub_num), img_size[1] // (2**sub_num)]
        self.pos_embed = self.create_parameter(
            shape=[1, num_patches, embed_dim[0]], default_initializer=zeros_)
        self.add_parameter("pos_embed", self.pos_embed)
        self.pos_drop = nn.Dropout(p=drop_rate)
        Block_unit = eval(block_unit)

        dpr = np.linspace(0, drop_path_rate, sum(depth))
        self.blocks1 = nn.LayerList([
            Block_unit(
                dim=embed_dim[0],
                num_heads=num_heads[0],
                mixer=mixer[0:depth[0]][i],
                HW=self.HW,
                local_mixer=local_mixer[0],
                mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias,
                qk_scale=qk_scale,
                drop=drop_rate,
T
Topdu 已提交
450
                act_layer=eval(act),
A
andyjpaddle 已提交
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
                attn_drop=attn_drop_rate,
                drop_path=dpr[0:depth[0]][i],
                norm_layer=norm_layer,
                epsilon=epsilon,
                prenorm=prenorm) for i in range(depth[0])
        ])
        if patch_merging is not None:
            self.sub_sample1 = SubSample(
                embed_dim[0],
                embed_dim[1],
                sub_norm=sub_norm,
                stride=[2, 1],
                types=patch_merging)
            HW = [self.HW[0] // 2, self.HW[1]]
        else:
            HW = self.HW
        self.patch_merging = patch_merging
        self.blocks2 = nn.LayerList([
            Block_unit(
                dim=embed_dim[1],
                num_heads=num_heads[1],
                mixer=mixer[depth[0]:depth[0] + depth[1]][i],
                HW=HW,
                local_mixer=local_mixer[1],
                mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias,
                qk_scale=qk_scale,
                drop=drop_rate,
                act_layer=eval(act),
                attn_drop=attn_drop_rate,
                drop_path=dpr[depth[0]:depth[0] + depth[1]][i],
                norm_layer=norm_layer,
                epsilon=epsilon,
                prenorm=prenorm) for i in range(depth[1])
        ])
        if patch_merging is not None:
            self.sub_sample2 = SubSample(
                embed_dim[1],
                embed_dim[2],
                sub_norm=sub_norm,
                stride=[2, 1],
                types=patch_merging)
            HW = [self.HW[0] // 4, self.HW[1]]
        else:
            HW = self.HW
        self.blocks3 = nn.LayerList([
            Block_unit(
                dim=embed_dim[2],
                num_heads=num_heads[2],
                mixer=mixer[depth[0] + depth[1]:][i],
                HW=HW,
                local_mixer=local_mixer[2],
                mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias,
                qk_scale=qk_scale,
                drop=drop_rate,
                act_layer=eval(act),
                attn_drop=attn_drop_rate,
                drop_path=dpr[depth[0] + depth[1]:][i],
                norm_layer=norm_layer,
                epsilon=epsilon,
                prenorm=prenorm) for i in range(depth[2])
        ])
        self.last_stage = last_stage
        if last_stage:
            self.avg_pool = nn.AdaptiveAvgPool2D([1, out_char_num])
            self.last_conv = nn.Conv2D(
                in_channels=embed_dim[2],
                out_channels=self.out_channels,
                kernel_size=1,
                stride=1,
                padding=0,
                bias_attr=False)
            self.hardswish = nn.Hardswish()
            self.dropout = nn.Dropout(p=last_drop, mode="downscale_in_infer")
        if not prenorm:
            self.norm = eval(norm_layer)(embed_dim[-1], epsilon=epsilon)
        self.use_lenhead = use_lenhead
        if use_lenhead:
            self.len_conv = nn.Linear(embed_dim[2], self.out_channels)
            self.hardswish_len = nn.Hardswish()
            self.dropout_len = nn.Dropout(
                p=last_drop, mode="downscale_in_infer")

        trunc_normal_(self.pos_embed)
        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight)
            if isinstance(m, nn.Linear) and m.bias is not None:
                zeros_(m.bias)
        elif isinstance(m, nn.LayerNorm):
            zeros_(m.bias)
            ones_(m.weight)

    def forward_features(self, x):
        x = self.patch_embed(x)
        x = x + self.pos_embed
        x = self.pos_drop(x)
        for blk in self.blocks1:
            x = blk(x)
        if self.patch_merging is not None:
            x = self.sub_sample1(
                x.transpose([0, 2, 1]).reshape(
                    [0, self.embed_dim[0], self.HW[0], self.HW[1]]))
        for blk in self.blocks2:
            x = blk(x)
        if self.patch_merging is not None:
            x = self.sub_sample2(
                x.transpose([0, 2, 1]).reshape(
                    [0, self.embed_dim[1], self.HW[0] // 2, self.HW[1]]))
        for blk in self.blocks3:
            x = blk(x)
        if not self.prenorm:
            x = self.norm(x)
        return x

    def forward(self, x):
        x = self.forward_features(x)
        if self.use_lenhead:
            len_x = self.len_conv(x.mean(1))
            len_x = self.dropout_len(self.hardswish_len(len_x))
        if self.last_stage:
            if self.patch_merging is not None:
                h = self.HW[0] // 4
            else:
                h = self.HW[0]
            x = self.avg_pool(
                x.transpose([0, 2, 1]).reshape(
                    [0, self.embed_dim[2], h, self.HW[1]]))
            x = self.last_conv(x)
            x = self.hardswish(x)
            x = self.dropout(x)
        if self.use_lenhead:
            return x, len_x
        return x