label_ops.py 50.7 KB
Newer Older
W
WenmuZhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

20
import copy
W
WenmuZhou 已提交
21
import numpy as np
T
tink2123 已提交
22
import string
L
add kie  
LDOUBLEV 已提交
23
from shapely.geometry import LineString, Point, Polygon
L
LDOUBLEV 已提交
24
import json
A
andyjpaddle 已提交
25
import copy
A
andyjpaddle 已提交
26 27
from random import sample

T
tink2123 已提交
28
from ppocr.utils.logging import get_logger
littletomatodonkey's avatar
littletomatodonkey 已提交
29
from ppocr.data.imaug.vqa.augment import order_by_tbyx
T
tink2123 已提交
30

W
WenmuZhou 已提交
31 32 33 34 35 36 37 38 39 40 41 42

class ClsLabelEncode(object):
    def __init__(self, label_list, **kwargs):
        self.label_list = label_list

    def __call__(self, data):
        label = data['label']
        if label not in self.label_list:
            return None
        label = self.label_list.index(label)
        data['label'] = label
        return data
W
WenmuZhou 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62


class DetLabelEncode(object):
    def __init__(self, **kwargs):
        pass

    def __call__(self, data):
        label = data['label']
        label = json.loads(label)
        nBox = len(label)
        boxes, txts, txt_tags = [], [], []
        for bno in range(0, nBox):
            box = label[bno]['points']
            txt = label[bno]['transcription']
            boxes.append(box)
            txts.append(txt)
            if txt in ['*', '###']:
                txt_tags.append(True)
            else:
                txt_tags.append(False)
L
LDOUBLEV 已提交
63 64
        if len(boxes) == 0:
            return None
M
MissPenguin 已提交
65
        boxes = self.expand_points_num(boxes)
W
WenmuZhou 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78
        boxes = np.array(boxes, dtype=np.float32)
        txt_tags = np.array(txt_tags, dtype=np.bool)

        data['polys'] = boxes
        data['texts'] = txts
        data['ignore_tags'] = txt_tags
        return data

    def order_points_clockwise(self, pts):
        rect = np.zeros((4, 2), dtype="float32")
        s = pts.sum(axis=1)
        rect[0] = pts[np.argmin(s)]
        rect[2] = pts[np.argmax(s)]
L
fix  
LDOUBLEV 已提交
79 80 81 82
        tmp = np.delete(pts, (np.argmin(s), np.argmax(s)), axis=0)
        diff = np.diff(np.array(tmp), axis=1)
        rect[1] = tmp[np.argmin(diff)]
        rect[3] = tmp[np.argmax(diff)]
W
WenmuZhou 已提交
83 84
        return rect

M
MissPenguin 已提交
85 86 87 88 89 90 91 92 93 94 95
    def expand_points_num(self, boxes):
        max_points_num = 0
        for box in boxes:
            if len(box) > max_points_num:
                max_points_num = len(box)
        ex_boxes = []
        for box in boxes:
            ex_box = box + [box[-1]] * (max_points_num - len(box))
            ex_boxes.append(ex_box)
        return ex_boxes

W
WenmuZhou 已提交
96 97 98 99 100 101 102

class BaseRecLabelEncode(object):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
A
andyjpaddle 已提交
103 104
                 use_space_char=False,
                 lower=False):
W
WenmuZhou 已提交
105 106

        self.max_text_len = max_text_length
T
tink2123 已提交
107 108
        self.beg_str = "sos"
        self.end_str = "eos"
A
andyjpaddle 已提交
109
        self.lower = lower
A
andyjpaddle 已提交
110
        self.use_default_dict = False
T
tink2123 已提交
111 112 113 114 115 116

        if character_dict_path is None:
            logger = get_logger()
            logger.warning(
                "The character_dict_path is None, model can only recognize number and lower letters"
            )
W
WenmuZhou 已提交
117 118
            self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
            dict_character = list(self.character_str)
T
tink2123 已提交
119
            self.lower = True
A
andyjpaddle 已提交
120
            self.use_default_dict = True
T
tink2123 已提交
121
        else:
122
            self.character_str = []
A
andyjpaddle 已提交
123 124
            if 'ppocr/utils/ic15_dict.txt' in character_dict_path:
                self.use_default_dict = True
W
WenmuZhou 已提交
125 126 127 128
            with open(character_dict_path, "rb") as fin:
                lines = fin.readlines()
                for line in lines:
                    line = line.decode('utf-8').strip("\n").strip("\r\n")
129
                    self.character_str.append(line)
W
WenmuZhou 已提交
130
            if use_space_char:
131
                self.character_str.append(" ")
W
WenmuZhou 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
            dict_character = list(self.character_str)
        dict_character = self.add_special_char(dict_character)
        self.dict = {}
        for i, char in enumerate(dict_character):
            self.dict[char] = i
        self.character = dict_character

    def add_special_char(self, dict_character):
        return dict_character

    def encode(self, text):
        """convert text-label into text-index.
        input:
            text: text labels of each image. [batch_size]

        output:
            text: concatenated text index for CTCLoss.
                    [sum(text_lengths)] = [text_index_0 + text_index_1 + ... + text_index_(n - 1)]
            length: length of each text. [batch_size]
        """
W
WenmuZhou 已提交
152
        if len(text) == 0 or len(text) > self.max_text_len:
W
WenmuZhou 已提交
153
            return None
T
tink2123 已提交
154
        if self.lower:
W
WenmuZhou 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
            text = text.lower()
        text_list = []
        for char in text:
            if char not in self.dict:
                # logger = get_logger()
                # logger.warning('{} is not in dict'.format(char))
                continue
            text_list.append(self.dict[char])
        if len(text_list) == 0:
            return None
        return text_list


class CTCLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
T
tink2123 已提交
176 177
        super(CTCLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)
W
WenmuZhou 已提交
178 179 180 181 182 183 184 185 186

    def __call__(self, data):
        text = data['label']
        text = self.encode(text)
        if text is None:
            return None
        data['length'] = np.array(len(text))
        text = text + [0] * (self.max_text_len - len(text))
        data['label'] = np.array(text)
187 188 189 190 191

        label = [0] * len(self.character)
        for x in text:
            label[x] += 1
        data['label_ace'] = np.array(label)
W
WenmuZhou 已提交
192 193 194 195 196 197 198
        return data

    def add_special_char(self, dict_character):
        dict_character = ['blank'] + dict_character
        return dict_character


J
Jethong 已提交
199
class E2ELabelEncodeTest(BaseRecLabelEncode):
J
Jethong 已提交
200 201 202 203 204
    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
T
tink2123 已提交
205 206
        super(E2ELabelEncodeTest, self).__init__(
            max_text_length, character_dict_path, use_space_char)
J
Jethong 已提交
207 208

    def __call__(self, data):
J
Jethong 已提交
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
        import json
        padnum = len(self.dict)
        label = data['label']
        label = json.loads(label)
        nBox = len(label)
        boxes, txts, txt_tags = [], [], []
        for bno in range(0, nBox):
            box = label[bno]['points']
            txt = label[bno]['transcription']
            boxes.append(box)
            txts.append(txt)
            if txt in ['*', '###']:
                txt_tags.append(True)
            else:
                txt_tags.append(False)
        boxes = np.array(boxes, dtype=np.float32)
        txt_tags = np.array(txt_tags, dtype=np.bool)
        data['polys'] = boxes
J
Jethong 已提交
227
        data['ignore_tags'] = txt_tags
J
Jethong 已提交
228
        temp_texts = []
J
Jethong 已提交
229
        for text in txts:
J
Jethong 已提交
230
            text = text.lower()
J
Jethong 已提交
231 232 233
            text = self.encode(text)
            if text is None:
                return None
J
Jethong 已提交
234 235
            text = text + [padnum] * (self.max_text_len - len(text)
                                      )  # use 36 to pad
J
Jethong 已提交
236 237 238 239 240
            temp_texts.append(text)
        data['texts'] = np.array(temp_texts)
        return data


J
Jethong 已提交
241
class E2ELabelEncodeTrain(object):
J
Jethong 已提交
242 243
    def __init__(self, **kwargs):
        pass
J
Jethong 已提交
244 245

    def __call__(self, data):
J
Jethong 已提交
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
        import json
        label = data['label']
        label = json.loads(label)
        nBox = len(label)
        boxes, txts, txt_tags = [], [], []
        for bno in range(0, nBox):
            box = label[bno]['points']
            txt = label[bno]['transcription']
            boxes.append(box)
            txts.append(txt)
            if txt in ['*', '###']:
                txt_tags.append(True)
            else:
                txt_tags.append(False)
        boxes = np.array(boxes, dtype=np.float32)
        txt_tags = np.array(txt_tags, dtype=np.bool)

        data['polys'] = boxes
        data['texts'] = txts
J
Jethong 已提交
265
        data['ignore_tags'] = txt_tags
J
Jethong 已提交
266 267 268
        return data


L
add kie  
LDOUBLEV 已提交
269
class KieLabelEncode(object):
270 271 272 273 274 275
    def __init__(self,
                 character_dict_path,
                 class_path,
                 norm=10,
                 directed=False,
                 **kwargs):
L
add kie  
LDOUBLEV 已提交
276 277
        super(KieLabelEncode, self).__init__()
        self.dict = dict({'': 0})
278
        self.label2classid_map = dict()
L
fix win  
LDOUBLEV 已提交
279
        with open(character_dict_path, 'r', encoding='utf-8') as fr:
L
add kie  
LDOUBLEV 已提交
280 281 282 283 284
            idx = 1
            for line in fr:
                char = line.strip()
                self.dict[char] = idx
                idx += 1
285 286 287 288 289
        with open(class_path, "r") as fin:
            lines = fin.readlines()
            for idx, line in enumerate(lines):
                line = line.strip("\n")
                self.label2classid_map[line] = idx
L
add kie  
LDOUBLEV 已提交
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
        self.norm = norm
        self.directed = directed

    def compute_relation(self, boxes):
        """Compute relation between every two boxes."""
        x1s, y1s = boxes[:, 0:1], boxes[:, 1:2]
        x2s, y2s = boxes[:, 4:5], boxes[:, 5:6]
        ws, hs = x2s - x1s + 1, np.maximum(y2s - y1s + 1, 1)
        dxs = (x1s[:, 0][None] - x1s) / self.norm
        dys = (y1s[:, 0][None] - y1s) / self.norm
        xhhs, xwhs = hs[:, 0][None] / hs, ws[:, 0][None] / hs
        whs = ws / hs + np.zeros_like(xhhs)
        relations = np.stack([dxs, dys, whs, xhhs, xwhs], -1)
        bboxes = np.concatenate([x1s, y1s, x2s, y2s], -1).astype(np.float32)
        return relations, bboxes

    def pad_text_indices(self, text_inds):
        """Pad text index to same length."""
L
debug  
LDOUBLEV 已提交
308
        max_len = 300
L
add kie  
LDOUBLEV 已提交
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
        recoder_len = max([len(text_ind) for text_ind in text_inds])
        padded_text_inds = -np.ones((len(text_inds), max_len), np.int32)
        for idx, text_ind in enumerate(text_inds):
            padded_text_inds[idx, :len(text_ind)] = np.array(text_ind)
        return padded_text_inds, recoder_len

    def list_to_numpy(self, ann_infos):
        """Convert bboxes, relations, texts and labels to ndarray."""
        boxes, text_inds = ann_infos['points'], ann_infos['text_inds']
        boxes = np.array(boxes, np.int32)
        relations, bboxes = self.compute_relation(boxes)

        labels = ann_infos.get('labels', None)
        if labels is not None:
            labels = np.array(labels, np.int32)
            edges = ann_infos.get('edges', None)
            if edges is not None:
                labels = labels[:, None]
                edges = np.array(edges)
                edges = (edges[:, None] == edges[None, :]).astype(np.int32)
                if self.directed:
                    edges = (edges & labels == 1).astype(np.int32)
                np.fill_diagonal(edges, -1)
                labels = np.concatenate([labels, edges], -1)
        padded_text_inds, recoder_len = self.pad_text_indices(text_inds)
L
debug  
LDOUBLEV 已提交
334
        max_num = 300
L
add kie  
LDOUBLEV 已提交
335 336
        temp_bboxes = np.zeros([max_num, 4])
        h, _ = bboxes.shape
那珈落's avatar
那珈落 已提交
337
        temp_bboxes[:h, :] = bboxes
L
add kie  
LDOUBLEV 已提交
338 339 340 341

        temp_relations = np.zeros([max_num, max_num, 5])
        temp_relations[:h, :h, :] = relations

L
debug  
LDOUBLEV 已提交
342
        temp_padded_text_inds = np.zeros([max_num, max_num])
L
add kie  
LDOUBLEV 已提交
343 344
        temp_padded_text_inds[:h, :] = padded_text_inds

L
debug  
LDOUBLEV 已提交
345
        temp_labels = np.zeros([max_num, max_num])
L
add kie  
LDOUBLEV 已提交
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
        temp_labels[:h, :h + 1] = labels

        tag = np.array([h, recoder_len])
        return dict(
            image=ann_infos['image'],
            points=temp_bboxes,
            relations=temp_relations,
            texts=temp_padded_text_inds,
            labels=temp_labels,
            tag=tag)

    def convert_canonical(self, points_x, points_y):

        assert len(points_x) == 4
        assert len(points_y) == 4

        points = [Point(points_x[i], points_y[i]) for i in range(4)]

        polygon = Polygon([(p.x, p.y) for p in points])
        min_x, min_y, _, _ = polygon.bounds
        points_to_lefttop = [
            LineString([points[i], Point(min_x, min_y)]) for i in range(4)
        ]
        distances = np.array([line.length for line in points_to_lefttop])
        sort_dist_idx = np.argsort(distances)
        lefttop_idx = sort_dist_idx[0]

        if lefttop_idx == 0:
            point_orders = [0, 1, 2, 3]
        elif lefttop_idx == 1:
            point_orders = [1, 2, 3, 0]
        elif lefttop_idx == 2:
            point_orders = [2, 3, 0, 1]
        else:
            point_orders = [3, 0, 1, 2]

        sorted_points_x = [points_x[i] for i in point_orders]
        sorted_points_y = [points_y[j] for j in point_orders]

        return sorted_points_x, sorted_points_y

    def sort_vertex(self, points_x, points_y):

        assert len(points_x) == 4
        assert len(points_y) == 4

        x = np.array(points_x)
        y = np.array(points_y)
        center_x = np.sum(x) * 0.25
        center_y = np.sum(y) * 0.25

        x_arr = np.array(x - center_x)
        y_arr = np.array(y - center_y)

        angle = np.arctan2(y_arr, x_arr) * 180.0 / np.pi
        sort_idx = np.argsort(angle)

        sorted_points_x, sorted_points_y = [], []
        for i in range(4):
            sorted_points_x.append(points_x[sort_idx[i]])
            sorted_points_y.append(points_y[sort_idx[i]])

        return self.convert_canonical(sorted_points_x, sorted_points_y)

    def __call__(self, data):
        import json
        label = data['label']
        annotations = json.loads(label)
        boxes, texts, text_inds, labels, edges = [], [], [], [], []
        for ann in annotations:
            box = ann['points']
            x_list = [box[i][0] for i in range(4)]
            y_list = [box[i][1] for i in range(4)]
            sorted_x_list, sorted_y_list = self.sort_vertex(x_list, y_list)
            sorted_box = []
            for x, y in zip(sorted_x_list, sorted_y_list):
                sorted_box.append(x)
                sorted_box.append(y)
            boxes.append(sorted_box)
            text = ann['transcription']
            texts.append(ann['transcription'])
            text_ind = [self.dict[c] for c in text if c in self.dict]
            text_inds.append(text_ind)
L
fix  
LDOUBLEV 已提交
429
            if 'label' in ann.keys():
430
                labels.append(self.label2classid_map[ann['label']])
L
fix  
LDOUBLEV 已提交
431 432
            elif 'key_cls' in ann.keys():
                labels.append(ann['key_cls'])
L
fix  
LDOUBLEV 已提交
433
            else:
文幕地方's avatar
文幕地方 已提交
434 435 436
                raise ValueError(
                    "Cannot found 'key_cls' in ann.keys(), please check your training annotation."
                )
L
add kie  
LDOUBLEV 已提交
437 438 439 440 441 442 443 444 445 446 447 448
            edges.append(ann.get('edge', 0))
        ann_infos = dict(
            image=data['image'],
            points=boxes,
            texts=texts,
            text_inds=text_inds,
            edges=edges,
            labels=labels)

        return self.list_to_numpy(ann_infos)


W
WenmuZhou 已提交
449 450 451 452 453 454 455 456
class AttnLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
T
tink2123 已提交
457 458
        super(AttnLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)
W
WenmuZhou 已提交
459 460

    def add_special_char(self, dict_character):
L
LDOUBLEV 已提交
461 462 463
        self.beg_str = "sos"
        self.end_str = "eos"
        dict_character = [self.beg_str] + dict_character + [self.end_str]
W
WenmuZhou 已提交
464 465
        return dict_character

L
LDOUBLEV 已提交
466 467
    def __call__(self, data):
        text = data['label']
W
WenmuZhou 已提交
468
        text = self.encode(text)
L
LDOUBLEV 已提交
469 470
        if text is None:
            return None
L
LDOUBLEV 已提交
471
        if len(text) >= self.max_text_len:
L
LDOUBLEV 已提交
472 473 474
            return None
        data['length'] = np.array(len(text))
        text = [0] + text + [len(self.character) - 1] + [0] * (self.max_text_len
T
tink2123 已提交
475
                                                               - len(text) - 2)
L
LDOUBLEV 已提交
476 477 478 479 480 481 482
        data['label'] = np.array(text)
        return data

    def get_ignored_tokens(self):
        beg_idx = self.get_beg_end_flag_idx("beg")
        end_idx = self.get_beg_end_flag_idx("end")
        return [beg_idx, end_idx]
W
WenmuZhou 已提交
483 484 485 486 487 488 489 490 491 492

    def get_beg_end_flag_idx(self, beg_or_end):
        if beg_or_end == "beg":
            idx = np.array(self.dict[self.beg_str])
        elif beg_or_end == "end":
            idx = np.array(self.dict[self.end_str])
        else:
            assert False, "Unsupport type %s in get_beg_end_flag_idx" \
                          % beg_or_end
        return idx
T
tink2123 已提交
493 494


495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
class RFLLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
        super(RFLLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)

    def add_special_char(self, dict_character):
        self.beg_str = "sos"
        self.end_str = "eos"
        dict_character = [self.beg_str] + dict_character + [self.end_str]
        return dict_character

    def encode_cnt(self, text):
        cnt_label = [0.0] * len(self.character)
        for char_ in text:
            cnt_label[char_] += 1
        return np.array(cnt_label)

    def __call__(self, data):
        text = data['label']
        text = self.encode(text)
        if text is None:
            return None
        if len(text) >= self.max_text_len:
            return None
        cnt_label = self.encode_cnt(text)
        data['length'] = np.array(len(text))
        text = [0] + text + [len(self.character) - 1] + [0] * (self.max_text_len
                                                               - len(text) - 2)
        if len(text) != self.max_text_len:
            return None
        data['label'] = np.array(text)
        data['cnt_label'] = cnt_label
        return data

    def get_ignored_tokens(self):
        beg_idx = self.get_beg_end_flag_idx("beg")
        end_idx = self.get_beg_end_flag_idx("end")
        return [beg_idx, end_idx]

    def get_beg_end_flag_idx(self, beg_or_end):
        if beg_or_end == "beg":
            idx = np.array(self.dict[self.beg_str])
        elif beg_or_end == "end":
            idx = np.array(self.dict[self.end_str])
        else:
            assert False, "Unsupport type %s in get_beg_end_flag_idx" \
                          % beg_or_end
        return idx


T
tink2123 已提交
551 552 553 554 555 556 557 558
class SEEDLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
T
tink2123 已提交
559 560
        super(SEEDLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)
T
tink2123 已提交
561 562

    def add_special_char(self, dict_character):
T
tink2123 已提交
563
        self.padding = "padding"
T
tink2123 已提交
564
        self.end_str = "eos"
T
tink2123 已提交
565 566 567 568
        self.unknown = "unknown"
        dict_character = dict_character + [
            self.end_str, self.padding, self.unknown
        ]
T
tink2123 已提交
569 570 571 572 573 574 575 576 577
        return dict_character

    def __call__(self, data):
        text = data['label']
        text = self.encode(text)
        if text is None:
            return None
        if len(text) >= self.max_text_len:
            return None
T
rm anno  
tink2123 已提交
578
        data['length'] = np.array(len(text)) + 1  # conclude eos
T
tink2123 已提交
579 580
        text = text + [len(self.character) - 3] + [len(self.character) - 2] * (
            self.max_text_len - len(text) - 1)
T
tink2123 已提交
581 582 583 584
        data['label'] = np.array(text)
        return data


T
tink2123 已提交
585 586 587 588 589 590 591 592
class SRNLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length=25,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
T
tink2123 已提交
593 594
        super(SRNLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)
T
tink2123 已提交
595 596 597 598 599 600 601 602

    def add_special_char(self, dict_character):
        dict_character = dict_character + [self.beg_str, self.end_str]
        return dict_character

    def __call__(self, data):
        text = data['label']
        text = self.encode(text)
T
tink2123 已提交
603
        char_num = len(self.character)
T
tink2123 已提交
604 605 606 607 608
        if text is None:
            return None
        if len(text) > self.max_text_len:
            return None
        data['length'] = np.array(len(text))
T
tink2123 已提交
609
        text = text + [char_num - 1] * (self.max_text_len - len(text))
T
tink2123 已提交
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
        data['label'] = np.array(text)
        return data

    def get_ignored_tokens(self):
        beg_idx = self.get_beg_end_flag_idx("beg")
        end_idx = self.get_beg_end_flag_idx("end")
        return [beg_idx, end_idx]

    def get_beg_end_flag_idx(self, beg_or_end):
        if beg_or_end == "beg":
            idx = np.array(self.dict[self.beg_str])
        elif beg_or_end == "end":
            idx = np.array(self.dict[self.end_str])
        else:
            assert False, "Unsupport type %s in get_beg_end_flag_idx" \
                          % beg_or_end
        return idx
M
MissPenguin 已提交
627

L
LDOUBLEV 已提交
628

文幕地方's avatar
文幕地方 已提交
629
class TableLabelEncode(AttnLabelEncode):
M
MissPenguin 已提交
630
    """ Convert between text-label and text-index """
L
LDOUBLEV 已提交
631 632 633 634

    def __init__(self,
                 max_text_length,
                 character_dict_path,
文幕地方's avatar
文幕地方 已提交
635 636 637
                 replace_empty_cell_token=False,
                 merge_no_span_structure=False,
                 learn_empty_box=False,
文幕地方's avatar
文幕地方 已提交
638
                 loc_reg_num=4,
L
LDOUBLEV 已提交
639
                 **kwargs):
文幕地方's avatar
文幕地方 已提交
640 641 642 643 644 645 646
        self.max_text_len = max_text_length
        self.lower = False
        self.learn_empty_box = learn_empty_box
        self.merge_no_span_structure = merge_no_span_structure
        self.replace_empty_cell_token = replace_empty_cell_token

        dict_character = []
M
MissPenguin 已提交
647 648
        with open(character_dict_path, "rb") as fin:
            lines = fin.readlines()
文幕地方's avatar
文幕地方 已提交
649 650 651 652
            for line in lines:
                line = line.decode('utf-8').strip("\n").strip("\r\n")
                dict_character.append(line)

653 654 655 656 657 658
        if self.merge_no_span_structure:
            if "<td></td>" not in dict_character:
                dict_character.append("<td></td>")
            if "<td>" in dict_character:
                dict_character.remove("<td>")

文幕地方's avatar
文幕地方 已提交
659 660 661 662 663
        dict_character = self.add_special_char(dict_character)
        self.dict = {}
        for i, char in enumerate(dict_character):
            self.dict[char] = i
        self.idx2char = {v: k for k, v in self.dict.items()}
L
LDOUBLEV 已提交
664

文幕地方's avatar
文幕地方 已提交
665
        self.character = dict_character
文幕地方's avatar
文幕地方 已提交
666
        self.loc_reg_num = loc_reg_num
文幕地方's avatar
文幕地方 已提交
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
        self.pad_idx = self.dict[self.beg_str]
        self.start_idx = self.dict[self.beg_str]
        self.end_idx = self.dict[self.end_str]

        self.td_token = ['<td>', '<td', '<eb></eb>', '<td></td>']
        self.empty_bbox_token_dict = {
            "[]": '<eb></eb>',
            "[' ']": '<eb1></eb1>',
            "['<b>', ' ', '</b>']": '<eb2></eb2>',
            "['\\u2028', '\\u2028']": '<eb3></eb3>',
            "['<sup>', ' ', '</sup>']": '<eb4></eb4>',
            "['<b>', '</b>']": '<eb5></eb5>',
            "['<i>', ' ', '</i>']": '<eb6></eb6>',
            "['<b>', '<i>', '</i>', '</b>']": '<eb7></eb7>',
            "['<b>', '<i>', ' ', '</i>', '</b>']": '<eb8></eb8>',
            "['<i>', '</i>']": '<eb9></eb9>',
            "['<b>', ' ', '\\u2028', ' ', '\\u2028', ' ', '</b>']":
            '<eb10></eb10>',
        }

    @property
    def _max_text_len(self):
        return self.max_text_len + 2
L
LDOUBLEV 已提交
690

M
MissPenguin 已提交
691 692
    def __call__(self, data):
        cells = data['cells']
文幕地方's avatar
文幕地方 已提交
693 694 695 696 697 698 699 700 701 702 703 704 705 706
        structure = data['structure']
        if self.merge_no_span_structure:
            structure = self._merge_no_span_structure(structure)
        if self.replace_empty_cell_token:
            structure = self._replace_empty_cell_token(structure, cells)
        # remove empty token and add " " to span token
        new_structure = []
        for token in structure:
            if token != '':
                if 'span' in token and token[0] != ' ':
                    token = ' ' + token
                new_structure.append(token)
        # encode structure
        structure = self.encode(new_structure)
M
MissPenguin 已提交
707 708
        if structure is None:
            return None
文幕地方's avatar
文幕地方 已提交
709 710 711 712 713

        structure = [self.start_idx] + structure + [self.end_idx
                                                    ]  # add sos abd eos
        structure = structure + [self.pad_idx] * (self._max_text_len -
                                                  len(structure))  # pad
M
MissPenguin 已提交
714 715 716
        structure = np.array(structure)
        data['structure'] = structure

文幕地方's avatar
文幕地方 已提交
717
        if len(structure) > self._max_text_len:
M
MissPenguin 已提交
718 719
            return None

文幕地方's avatar
文幕地方 已提交
720 721
        # encode box
        bboxes = np.zeros(
文幕地方's avatar
文幕地方 已提交
722
            (self._max_text_len, self.loc_reg_num), dtype=np.float32)
文幕地方's avatar
文幕地方 已提交
723 724 725
        bbox_masks = np.zeros((self._max_text_len, 1), dtype=np.float32)

        bbox_idx = 0
文幕地方's avatar
fix bug  
文幕地方 已提交
726

文幕地方's avatar
文幕地方 已提交
727 728
        for i, token in enumerate(structure):
            if self.idx2char[token] in self.td_token:
文幕地方's avatar
fix bug  
文幕地方 已提交
729 730
                if 'bbox' in cells[bbox_idx] and len(cells[bbox_idx][
                        'tokens']) > 0:
文幕地方's avatar
文幕地方 已提交
731 732 733 734 735 736 737 738 739
                    bbox = cells[bbox_idx]['bbox'].copy()
                    bbox = np.array(bbox, dtype=np.float32).reshape(-1)
                    bboxes[i] = bbox
                    bbox_masks[i] = 1.0
                if self.learn_empty_box:
                    bbox_masks[i] = 1.0
                bbox_idx += 1
        data['bboxes'] = bboxes
        data['bbox_masks'] = bbox_masks
M
MissPenguin 已提交
740 741
        return data

文幕地方's avatar
文幕地方 已提交
742
    def _merge_no_span_structure(self, structure):
M
MissPenguin 已提交
743
        """
文幕地方's avatar
fix bug  
文幕地方 已提交
744
        This code is refer from:
文幕地方's avatar
add ref  
文幕地方 已提交
745 746
        https://github.com/JiaquanYe/TableMASTER-mmocr/blob/master/table_recognition/data_preprocess.py
        """
文幕地方's avatar
文幕地方 已提交
747 748 749 750 751 752 753 754 755 756 757 758
        new_structure = []
        i = 0
        while i < len(structure):
            token = structure[i]
            if token == '<td>':
                token = '<td></td>'
                i += 1
            new_structure.append(token)
            i += 1
        return new_structure

    def _replace_empty_cell_token(self, token_list, cells):
文幕地方's avatar
add ref  
文幕地方 已提交
759 760 761 762 763
        """
        This fun code is refer from:
        https://github.com/JiaquanYe/TableMASTER-mmocr/blob/master/table_recognition/data_preprocess.py
        """

文幕地方's avatar
文幕地方 已提交
764 765 766 767 768 769 770 771 772
        bbox_idx = 0
        add_empty_bbox_token_list = []
        for token in token_list:
            if token in ['<td></td>', '<td', '<td>']:
                if 'bbox' not in cells[bbox_idx].keys():
                    content = str(cells[bbox_idx]['tokens'])
                    token = self.empty_bbox_token_dict[content]
                add_empty_bbox_token_list.append(token)
                bbox_idx += 1
M
MissPenguin 已提交
773
            else:
文幕地方's avatar
文幕地方 已提交
774 775
                add_empty_bbox_token_list.append(token)
        return add_empty_bbox_token_list
M
MissPenguin 已提交
776 777


文幕地方's avatar
文幕地方 已提交
778 779 780 781 782 783 784 785 786
class TableMasterLabelEncode(TableLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path,
                 replace_empty_cell_token=False,
                 merge_no_span_structure=False,
                 learn_empty_box=False,
文幕地方's avatar
文幕地方 已提交
787
                 loc_reg_num=4,
文幕地方's avatar
文幕地方 已提交
788 789 790
                 **kwargs):
        super(TableMasterLabelEncode, self).__init__(
            max_text_length, character_dict_path, replace_empty_cell_token,
文幕地方's avatar
文幕地方 已提交
791
            merge_no_span_structure, learn_empty_box, loc_reg_num, **kwargs)
文幕地方's avatar
fix bug  
文幕地方 已提交
792 793
        self.pad_idx = self.dict[self.pad_str]
        self.unknown_idx = self.dict[self.unknown_str]
文幕地方's avatar
文幕地方 已提交
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811

    @property
    def _max_text_len(self):
        return self.max_text_len

    def add_special_char(self, dict_character):
        self.beg_str = '<SOS>'
        self.end_str = '<EOS>'
        self.unknown_str = '<UKN>'
        self.pad_str = '<PAD>'
        dict_character = dict_character
        dict_character = dict_character + [
            self.unknown_str, self.beg_str, self.end_str, self.pad_str
        ]
        return dict_character


class TableBoxEncode(object):
文幕地方's avatar
文幕地方 已提交
812
    def __init__(self, in_box_format='xyxy', out_box_format='xyxy', **kwargs):
文幕地方's avatar
文幕地方 已提交
813
        assert out_box_format in ['xywh', 'xyxy', 'xyxyxyxy']
文幕地方's avatar
文幕地方 已提交
814 815
        self.in_box_format = in_box_format
        self.out_box_format = out_box_format
文幕地方's avatar
文幕地方 已提交
816 817 818 819

    def __call__(self, data):
        img_height, img_width = data['image'].shape[:2]
        bboxes = data['bboxes']
文幕地方's avatar
文幕地方 已提交
820 821 822 823 824 825 826
        if self.in_box_format != self.out_box_format:
            if self.out_box_format == 'xywh':
                if self.in_box_format == 'xyxyxyxy':
                    bboxes = self.xyxyxyxy2xywh(bboxes)
                elif self.in_box_format == 'xyxy':
                    bboxes = self.xyxy2xywh(bboxes)

文幕地方's avatar
文幕地方 已提交
827 828 829 830 831
        bboxes[:, 0::2] /= img_width
        bboxes[:, 1::2] /= img_height
        data['bboxes'] = bboxes
        return data

文幕地方's avatar
文幕地方 已提交
832 833 834 835 836 837 838 839
    def xyxyxyxy2xywh(self, boxes):
        new_bboxes = np.zeros([len(bboxes), 4])
        new_bboxes[:, 0] = bboxes[:, 0::2].min()  # x1
        new_bboxes[:, 1] = bboxes[:, 1::2].min()  # y1
        new_bboxes[:, 2] = bboxes[:, 0::2].max() - new_bboxes[:, 0]  # w
        new_bboxes[:, 3] = bboxes[:, 1::2].max() - new_bboxes[:, 1]  # h
        return new_bboxes

文幕地方's avatar
文幕地方 已提交
840 841 842 843 844 845 846
    def xyxy2xywh(self, bboxes):
        new_bboxes = np.empty_like(bboxes)
        new_bboxes[:, 0] = (bboxes[:, 0] + bboxes[:, 2]) / 2  # x center
        new_bboxes[:, 1] = (bboxes[:, 1] + bboxes[:, 3]) / 2  # y center
        new_bboxes[:, 2] = bboxes[:, 2] - bboxes[:, 0]  # width
        new_bboxes[:, 3] = bboxes[:, 3] - bboxes[:, 1]  # height
        return new_bboxes
A
andyjpaddle 已提交
847 848 849 850 851 852 853 854 855 856


class SARLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
T
tink2123 已提交
857 858
        super(SARLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)
A
andyjpaddle 已提交
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883

    def add_special_char(self, dict_character):
        beg_end_str = "<BOS/EOS>"
        unknown_str = "<UKN>"
        padding_str = "<PAD>"
        dict_character = dict_character + [unknown_str]
        self.unknown_idx = len(dict_character) - 1
        dict_character = dict_character + [beg_end_str]
        self.start_idx = len(dict_character) - 1
        self.end_idx = len(dict_character) - 1
        dict_character = dict_character + [padding_str]
        self.padding_idx = len(dict_character) - 1

        return dict_character

    def __call__(self, data):
        text = data['label']
        text = self.encode(text)
        if text is None:
            return None
        if len(text) >= self.max_text_len - 1:
            return None
        data['length'] = np.array(len(text))
        target = [self.start_idx] + text + [self.end_idx]
        padded_text = [self.padding_idx for _ in range(self.max_text_len)]
T
tink2123 已提交
884

A
andyjpaddle 已提交
885 886 887 888 889 890
        padded_text[:len(target)] = target
        data['label'] = np.array(padded_text)
        return data

    def get_ignored_tokens(self):
        return [self.padding_idx]
891 892


893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
class PRENLabelEncode(BaseRecLabelEncode):
    def __init__(self,
                 max_text_length,
                 character_dict_path,
                 use_space_char=False,
                 **kwargs):
        super(PRENLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)

    def add_special_char(self, dict_character):
        padding_str = '<PAD>'  # 0 
        end_str = '<EOS>'  # 1
        unknown_str = '<UNK>'  # 2

        dict_character = [padding_str, end_str, unknown_str] + dict_character
        self.padding_idx = 0
        self.end_idx = 1
        self.unknown_idx = 2

        return dict_character

    def encode(self, text):
        if len(text) == 0 or len(text) >= self.max_text_len:
            return None
        if self.lower:
            text = text.lower()
        text_list = []
        for char in text:
            if char not in self.dict:
                text_list.append(self.unknown_idx)
            else:
                text_list.append(self.dict[char])
        text_list.append(self.end_idx)
        if len(text_list) < self.max_text_len:
            text_list += [self.padding_idx] * (
                self.max_text_len - len(text_list))
        return text_list

    def __call__(self, data):
        text = data['label']
        encoded_text = self.encode(text)
        if encoded_text is None:
            return None
        data['label'] = np.array(encoded_text)
        return data


940 941
class VQATokenLabelEncode(object):
    """
文幕地方's avatar
文幕地方 已提交
942
    Label encode for NLP VQA methods
943 944 945 946 947 948 949
    """

    def __init__(self,
                 class_path,
                 contains_re=False,
                 add_special_ids=False,
                 algorithm='LayoutXLM',
950
                 use_textline_bbox_info=True,
littletomatodonkey's avatar
littletomatodonkey 已提交
951
                 order_method=None,
952 953 954 955
                 infer_mode=False,
                 ocr_engine=None,
                 **kwargs):
        super(VQATokenLabelEncode, self).__init__()
文幕地方's avatar
文幕地方 已提交
956
        from paddlenlp.transformers import LayoutXLMTokenizer, LayoutLMTokenizer, LayoutLMv2Tokenizer
957 958 959 960 961 962 963 964 965
        from ppocr.utils.utility import load_vqa_bio_label_maps
        tokenizer_dict = {
            'LayoutXLM': {
                'class': LayoutXLMTokenizer,
                'pretrained_model': 'layoutxlm-base-uncased'
            },
            'LayoutLM': {
                'class': LayoutLMTokenizer,
                'pretrained_model': 'layoutlm-base-uncased'
文幕地方's avatar
文幕地方 已提交
966 967 968 969
            },
            'LayoutLMv2': {
                'class': LayoutLMv2Tokenizer,
                'pretrained_model': 'layoutlmv2-base-uncased'
970 971 972 973 974 975 976 977 978 979
            }
        }
        self.contains_re = contains_re
        tokenizer_config = tokenizer_dict[algorithm]
        self.tokenizer = tokenizer_config['class'].from_pretrained(
            tokenizer_config['pretrained_model'])
        self.label2id_map, id2label_map = load_vqa_bio_label_maps(class_path)
        self.add_special_ids = add_special_ids
        self.infer_mode = infer_mode
        self.ocr_engine = ocr_engine
980
        self.use_textline_bbox_info = use_textline_bbox_info
littletomatodonkey's avatar
littletomatodonkey 已提交
981 982
        self.order_method = order_method
        assert self.order_method in [None, "tb-yx"]
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016

    def split_bbox(self, bbox, text, tokenizer):
        words = text.split()
        token_bboxes = []
        curr_word_idx = 0
        x1, y1, x2, y2 = bbox
        unit_w = (x2 - x1) / len(text)
        for idx, word in enumerate(words):
            curr_w = len(word) * unit_w
            word_bbox = [x1, y1, x1 + curr_w, y2]
            token_bboxes.extend([word_bbox] * len(tokenizer.tokenize(word)))
            x1 += (len(word) + 1) * unit_w
        return token_bboxes

    def filter_empty_contents(self, ocr_info):
        """
        find out the empty texts and remove the links
        """
        new_ocr_info = []
        empty_index = []
        for idx, info in enumerate(ocr_info):
            if len(info["transcription"]) > 0:
                new_ocr_info.append(copy.deepcopy(info))
            else:
                empty_index.append(info["id"])

        for idx, info in enumerate(new_ocr_info):
            new_link = []
            for link in info["linking"]:
                if link[0] in empty_index or link[1] in empty_index:
                    continue
                new_link.append(link)
            new_ocr_info[idx]["linking"] = new_link
        return new_ocr_info
1017 1018

    def __call__(self, data):
文幕地方's avatar
文幕地方 已提交
1019 1020
        # load bbox and label info
        ocr_info = self._load_ocr_info(data)
1021

littletomatodonkey's avatar
littletomatodonkey 已提交
1022 1023 1024 1025 1026 1027 1028 1029
        for idx in range(len(ocr_info)):
            if "bbox" not in ocr_info[idx]:
                ocr_info[idx]["bbox"] = self.trans_poly_to_bbox(ocr_info[idx][
                    "points"])

        if self.order_method == "tb-yx":
            ocr_info = order_by_tbyx(ocr_info)

1030 1031 1032 1033 1034
        # for re
        train_re = self.contains_re and not self.infer_mode
        if train_re:
            ocr_info = self.filter_empty_contents(ocr_info)

文幕地方's avatar
文幕地方 已提交
1035
        height, width, _ = data['image'].shape
1036 1037 1038 1039 1040

        words_list = []
        bbox_list = []
        input_ids_list = []
        token_type_ids_list = []
文幕地方's avatar
文幕地方 已提交
1041
        segment_offset_id = []
1042 1043
        gt_label_list = []

文幕地方's avatar
文幕地方 已提交
1044 1045 1046 1047 1048 1049 1050
        entities = []

        if train_re:
            relations = []
            id2label = {}
            entity_id_to_index_map = {}
            empty_entity = set()
文幕地方's avatar
文幕地方 已提交
1051 1052 1053 1054

        data['ocr_info'] = copy.deepcopy(ocr_info)

        for info in ocr_info:
1055 1056 1057
            text = info["transcription"]
            if len(text) <= 0:
                continue
文幕地方's avatar
文幕地方 已提交
1058
            if train_re:
1059
                # for re
1060
                if len(text) == 0:
1061 1062 1063 1064
                    empty_entity.add(info["id"])
                    continue
                id2label[info["id"]] = info["label"]
                relations.extend([tuple(sorted(l)) for l in info["linking"]])
文幕地方's avatar
文幕地方 已提交
1065
            # smooth_box
1066
            info["bbox"] = self.trans_poly_to_bbox(info["points"])
1067 1068

            encode_res = self.tokenizer.encode(
文幕地方's avatar
文幕地方 已提交
1069 1070 1071 1072
                text,
                pad_to_max_seq_len=False,
                return_attention_mask=True,
                return_token_type_ids=True)
1073 1074 1075 1076 1077 1078 1079 1080

            if not self.add_special_ids:
                # TODO: use tok.all_special_ids to remove
                encode_res["input_ids"] = encode_res["input_ids"][1:-1]
                encode_res["token_type_ids"] = encode_res["token_type_ids"][1:
                                                                            -1]
                encode_res["attention_mask"] = encode_res["attention_mask"][1:
                                                                            -1]
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093

            if self.use_textline_bbox_info:
                bbox = [info["bbox"]] * len(encode_res["input_ids"])
            else:
                bbox = self.split_bbox(info["bbox"], info["transcription"],
                                       self.tokenizer)
            if len(bbox) <= 0:
                continue
            bbox = self._smooth_box(bbox, height, width)
            if self.add_special_ids:
                bbox.insert(0, [0, 0, 0, 0])
                bbox.append([0, 0, 0, 0])

文幕地方's avatar
文幕地方 已提交
1094 1095 1096 1097 1098 1099
            # parse label
            if not self.infer_mode:
                label = info['label']
                gt_label = self._parse_label(label, encode_res)

            # construct entities for re
文幕地方's avatar
文幕地方 已提交
1100 1101 1102 1103
            if train_re:
                if gt_label[0] != self.label2id_map["O"]:
                    entity_id_to_index_map[info["id"]] = len(entities)
                    label = label.upper()
1104 1105 1106 1107
                    entities.append({
                        "start": len(input_ids_list),
                        "end":
                        len(input_ids_list) + len(encode_res["input_ids"]),
文幕地方's avatar
文幕地方 已提交
1108
                        "label": label.upper(),
1109
                    })
文幕地方's avatar
文幕地方 已提交
1110 1111 1112 1113 1114 1115
            else:
                entities.append({
                    "start": len(input_ids_list),
                    "end": len(input_ids_list) + len(encode_res["input_ids"]),
                    "label": 'O',
                })
1116 1117
            input_ids_list.extend(encode_res["input_ids"])
            token_type_ids_list.extend(encode_res["token_type_ids"])
1118
            bbox_list.extend(bbox)
1119
            words_list.append(text)
文幕地方's avatar
文幕地方 已提交
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
            segment_offset_id.append(len(input_ids_list))
            if not self.infer_mode:
                gt_label_list.extend(gt_label)

        data['input_ids'] = input_ids_list
        data['token_type_ids'] = token_type_ids_list
        data['bbox'] = bbox_list
        data['attention_mask'] = [1] * len(input_ids_list)
        data['labels'] = gt_label_list
        data['segment_offset_id'] = segment_offset_id
1130 1131 1132 1133
        data['tokenizer_params'] = dict(
            padding_side=self.tokenizer.padding_side,
            pad_token_type_id=self.tokenizer.pad_token_type_id,
            pad_token_id=self.tokenizer.pad_token_id)
文幕地方's avatar
文幕地方 已提交
1134
        data['entities'] = entities
1135

文幕地方's avatar
文幕地方 已提交
1136 1137 1138 1139 1140
        if train_re:
            data['relations'] = relations
            data['id2label'] = id2label
            data['empty_entity'] = empty_entity
            data['entity_id_to_index_map'] = entity_id_to_index_map
1141 1142
        return data

1143
    def trans_poly_to_bbox(self, poly):
littletomatodonkey's avatar
littletomatodonkey 已提交
1144 1145 1146 1147
        x1 = int(np.min([p[0] for p in poly]))
        x2 = int(np.max([p[0] for p in poly]))
        y1 = int(np.min([p[1] for p in poly]))
        y2 = int(np.max([p[1] for p in poly]))
1148
        return [x1, y1, x2, y2]
文幕地方's avatar
文幕地方 已提交
1149

1150
    def _load_ocr_info(self, data):
文幕地方's avatar
文幕地方 已提交
1151
        if self.infer_mode:
1152
            ocr_result = self.ocr_engine.ocr(data['image'], cls=False)[0]
文幕地方's avatar
文幕地方 已提交
1153 1154 1155
            ocr_info = []
            for res in ocr_result:
                ocr_info.append({
1156 1157 1158
                    "transcription": res[1][0],
                    "bbox": self.trans_poly_to_bbox(res[0]),
                    "points": res[0],
文幕地方's avatar
文幕地方 已提交
1159 1160 1161 1162 1163 1164
                })
            return ocr_info
        else:
            info = data['label']
            # read text info
            info_dict = json.loads(info)
1165
            return info_dict
文幕地方's avatar
文幕地方 已提交
1166

1167 1168 1169 1170 1171 1172 1173 1174
    def _smooth_box(self, bboxes, height, width):
        bboxes = np.array(bboxes)
        bboxes[:, 0] = bboxes[:, 0] * 1000 / width
        bboxes[:, 2] = bboxes[:, 2] * 1000 / width
        bboxes[:, 1] = bboxes[:, 1] * 1000 / height
        bboxes[:, 3] = bboxes[:, 3] * 1000 / height
        bboxes = bboxes.astype("int64").tolist()
        return bboxes
文幕地方's avatar
文幕地方 已提交
1175 1176 1177

    def _parse_label(self, label, encode_res):
        gt_label = []
1178
        if label.lower() in ["other", "others", "ignore"]:
文幕地方's avatar
文幕地方 已提交
1179 1180 1181 1182 1183 1184
            gt_label.extend([0] * len(encode_res["input_ids"]))
        else:
            gt_label.append(self.label2id_map[("b-" + label).upper()])
            gt_label.extend([self.label2id_map[("i-" + label).upper()]] *
                            (len(encode_res["input_ids"]) - 1))
        return gt_label
A
andyjpaddle 已提交
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214


class MultiLabelEncode(BaseRecLabelEncode):
    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
        super(MultiLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)

        self.ctc_encode = CTCLabelEncode(max_text_length, character_dict_path,
                                         use_space_char, **kwargs)
        self.sar_encode = SARLabelEncode(max_text_length, character_dict_path,
                                         use_space_char, **kwargs)

    def __call__(self, data):
        data_ctc = copy.deepcopy(data)
        data_sar = copy.deepcopy(data)
        data_out = dict()
        data_out['img_path'] = data.get('img_path', None)
        data_out['image'] = data['image']
        ctc = self.ctc_encode.__call__(data_ctc)
        sar = self.sar_encode.__call__(data_sar)
        if ctc is None or sar is None:
            return None
        data_out['label_ctc'] = ctc['label']
        data_out['label_sar'] = sar['label']
        data_out['length'] = ctc['length']
        return data_out
xuyang2233's avatar
add pr  
xuyang2233 已提交
1215 1216


1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
class NRTRLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):

        super(NRTRLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)

    def __call__(self, data):
        text = data['label']
        text = self.encode(text)
        if text is None:
            return None
        if len(text) >= self.max_text_len - 1:
            return None
        data['length'] = np.array(len(text))
        text.insert(0, 2)
        text.append(3)
        text = text + [0] * (self.max_text_len - len(text))
        data['label'] = np.array(text)
        return data

    def add_special_char(self, dict_character):
        dict_character = ['blank', '<unk>', '<s>', '</s>'] + dict_character
        return dict_character


class ViTSTRLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 ignore_index=0,
                 **kwargs):

        super(ViTSTRLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)
        self.ignore_index = ignore_index

    def __call__(self, data):
        text = data['label']
        text = self.encode(text)
        if text is None:
            return None
        if len(text) >= self.max_text_len:
            return None
        data['length'] = np.array(len(text))
        text.insert(0, self.ignore_index)
        text.append(1)
        text = text + [self.ignore_index] * (self.max_text_len + 2 - len(text))
        data['label'] = np.array(text)
        return data

    def add_special_char(self, dict_character):
        dict_character = ['<s>', '</s>'] + dict_character
        return dict_character


class ABINetLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 ignore_index=100,
                 **kwargs):

        super(ABINetLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char)
        self.ignore_index = ignore_index

    def __call__(self, data):
        text = data['label']
        text = self.encode(text)
        if text is None:
            return None
        if len(text) >= self.max_text_len:
            return None
        data['length'] = np.array(len(text))
        text.append(0)
        text = text + [self.ignore_index] * (self.max_text_len + 1 - len(text))
        data['label'] = np.array(text)
        return data

    def add_special_char(self, dict_character):
        dict_character = ['</s>'] + dict_character
        return dict_character
xuyang2233's avatar
xuyang2233 已提交
1311

文幕地方's avatar
文幕地方 已提交
1312

X
xiaoting 已提交
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
class SRLabelEncode(BaseRecLabelEncode):
    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 **kwargs):
        super(SRLabelEncode, self).__init__(max_text_length,
                                            character_dict_path, use_space_char)
        self.dic = {}
        with open(character_dict_path, 'r') as fin:
            for line in fin.readlines():
                line = line.strip()
                character, sequence = line.split()
                self.dic[character] = sequence
        english_stroke_alphabet = '0123456789'
        self.english_stroke_dict = {}
        for index in range(len(english_stroke_alphabet)):
            self.english_stroke_dict[english_stroke_alphabet[index]] = index

    def encode(self, label):
        stroke_sequence = ''
        for character in label:
            if character not in self.dic:
                continue
            else:
                stroke_sequence += self.dic[character]
        stroke_sequence += '0'
        label = stroke_sequence

        length = len(label)

        input_tensor = np.zeros(self.max_text_len).astype("int64")
        for j in range(length - 1):
            input_tensor[j + 1] = self.english_stroke_dict[label[j]]

        return length, input_tensor

    def __call__(self, data):
        text = data['label']
        length, input_tensor = self.encode(text)

        data["length"] = length
        data["input_tensor"] = input_tensor
        if text is None:
            return None
        return data


1361
class SPINLabelEncode(AttnLabelEncode):
xuyang2233's avatar
add pr  
xuyang2233 已提交
1362 1363 1364 1365 1366 1367 1368 1369
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 lower=True,
                 **kwargs):
1370
        super(SPINLabelEncode, self).__init__(
xuyang2233's avatar
add pr  
xuyang2233 已提交
1371 1372
            max_text_length, character_dict_path, use_space_char)
        self.lower = lower
文幕地方's avatar
文幕地方 已提交
1373

xuyang2233's avatar
add pr  
xuyang2233 已提交
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
    def add_special_char(self, dict_character):
        self.beg_str = "sos"
        self.end_str = "eos"
        dict_character = [self.beg_str] + [self.end_str] + dict_character
        return dict_character

    def __call__(self, data):
        text = data['label']
        text = self.encode(text)
        if text is None:
            return None
        if len(text) > self.max_text_len:
            return None
        data['length'] = np.array(len(text))
        target = [0] + text + [1]
        padded_text = [0 for _ in range(self.max_text_len + 2)]

        padded_text[:len(target)] = target
        data['label'] = np.array(padded_text)
文幕地方's avatar
文幕地方 已提交
1393
        return data
A
andyjpaddle 已提交
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406


class VLLabelEncode(BaseRecLabelEncode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 max_text_length,
                 character_dict_path=None,
                 use_space_char=False,
                 lower=True,
                 **kwargs):
        super(VLLabelEncode, self).__init__(
            max_text_length, character_dict_path, use_space_char, lower)
A
andyjpaddle 已提交
1407 1408 1409
        if self.use_default_dict:
            self.character = self.character[10:] + self.character[
                1:10] + [self.character[0]]
A
andyjpaddle 已提交
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
        self.dict = {}
        for i, char in enumerate(self.character):
            self.dict[char] = i

    def __call__(self, data):
        text = data['label']  # original string
        # generate occluded text
        len_str = len(text)
        if len_str <= 0:
            return None
        change_num = 1
        order = list(range(len_str))
        change_id = sample(order, change_num)[0]
        label_sub = text[change_id]
        if change_id == (len_str - 1):
            label_res = text[:change_id]
        elif change_id == 0:
            label_res = text[1:]
        else:
            label_res = text[:change_id] + text[change_id + 1:]

        data['label_res'] = label_res  # remaining string
        data['label_sub'] = label_sub  # occluded character
        data['label_id'] = change_id  # character index
        # encode label
        text = self.encode(text)
        if text is None:
            return None
        text = [i + 1 for i in text]
        data['length'] = np.array(len(text))
        text = text + [0] * (self.max_text_len - len(text))
        data['label'] = np.array(text)
        label_res = self.encode(label_res)
        label_sub = self.encode(label_sub)
        if label_res is None:
            label_res = []
        else:
            label_res = [i + 1 for i in label_res]
        if label_sub is None:
            label_sub = []
        else:
            label_sub = [i + 1 for i in label_sub]
        data['length_res'] = np.array(len(label_res))
        data['length_sub'] = np.array(len(label_sub))
        label_res = label_res + [0] * (self.max_text_len - len(label_res))
        label_sub = label_sub + [0] * (self.max_text_len - len(label_sub))
        data['label_res'] = np.array(label_res)
        data['label_sub'] = np.array(label_sub)
        return data
H
huangjun12 已提交
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484


class CTLabelEncode(object):
    def __init__(self, **kwargs):
        pass

    def __call__(self, data):
        label = data['label']

        label = json.loads(label)
        nBox = len(label)
        boxes, txts = [], []
        for bno in range(0, nBox):
            box = label[bno]['points']
            box = np.array(box)

            boxes.append(box)
            txt = label[bno]['transcription']
            txts.append(txt)

        if len(boxes) == 0:
            return None

        data['polys'] = boxes
        data['texts'] = txts
        return data