README.md 6.3 KB
Newer Older
M
MissPenguin 已提交
1
# Table Recognition
W
WenmuZhou 已提交
2 3

## 1. pipeline
M
MissPenguin 已提交
4
The table recognition mainly contains three models
W
WenmuZhou 已提交
5 6 7 8
1. Single line text detection-DB
2. Single line text recognition-CRNN
3. Table structure and cell coordinate prediction-RARE

M
MissPenguin 已提交
9
The table recognition flow chart is as follows
W
WenmuZhou 已提交
10

W
WenmuZhou 已提交
11
![tableocr_pipeline](../../doc/table/tableocr_pipeline_en.jpg)
W
WenmuZhou 已提交
12 13 14 15 16 17 18 19

1. The coordinates of single-line text is detected by DB model, and then sends it to the recognition model to get the recognition result.
2. The table structure and cell coordinates is predicted by RARE model.
3. The recognition result of the cell is combined by the coordinates, recognition result of the single line and the coordinates of the cell.
4. The cell recognition result and the table structure together construct the html string of the table.

## 2. How to use

W
WenmuZhou 已提交
20
### 2.1 quick start
W
WenmuZhou 已提交
21

W
WenmuZhou 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
```python
cd PaddleOCR/ppstructure

# download model
mkdir inference && cd inference
# Download the detection model of the ultra-lightweight Chinese OCR model and uncompress it
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar && tar xf ch_ppocr_mobile_v2.0_det_infer.tar
# Download the recognition model of the ultra-lightweight Chinese OCR model and uncompress it
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar && tar xf ch_ppocr_mobile_v2.0_rec_infer.tar
# Download the table structure model of the ultra-lightweight Chinese OCR model and uncompress it
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_structure_infer.tar && tar xf en_ppocr_mobile_v2.0_table_structure_infer.tar
cd ..

python3 table/predict_table.py --det_model_dir=inference/ch_ppocr_mobile_v2.0_det_infer --rec_model_dir=inference/ch_ppocr_mobile_v2.0_rec_infer --table_model_dir=inference/en_ppocr_mobile_v2.0_table_structure_infer --image_dir=../doc/table/table.jpg --rec_char_dict_path=../ppocr/utils/ppocr_keys_v1.txt --table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt --rec_char_type=ch --det_limit_side_len=736 --det_limit_type=min --output ../output/table
```
After running, the excel sheet of each picture will be saved in the directory specified by the output field

### 2.2 Train
W
WenmuZhou 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

In this chapter, we only introduce the training of the table structure model, For model training of [text detection](../../doc/doc_en/detection_en.md) and [text recognition](../../doc/doc_en/recognition_en.md), please refer to the corresponding documents

#### data preparation  
The training data uses public data set [PubTabNet](https://arxiv.org/abs/1911.10683 ), Can be downloaded from the official [website](https://github.com/ibm-aur-nlp/PubTabNet) 。The PubTabNet data set contains about 500,000 images, as well as annotations in html format。

#### Start training  
*If you are installing the cpu version of paddle, please modify the `use_gpu` field in the configuration file to false*
```shell
# single GPU training
python3 tools/train.py -c configs/table/table_mv3.yml
# multi-GPU training
# Set the GPU ID used by the '--gpus' parameter.
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/table/table_mv3.yml
```

In the above instruction, use `-c` to select the training to use the `configs/table/table_mv3.yml` configuration file.
For a detailed explanation of the configuration file, please refer to [config](../../doc/doc_en/config_en.md).

#### load trained model and continue training

If you expect to load trained model and continue the training again, you can specify the parameter `Global.checkpoints` as the model path to be loaded.

```shell
python3 tools/train.py -c configs/table/table_mv3.yml -o Global.checkpoints=./your/trained/model
```

**Note**: The priority of `Global.checkpoints` is higher than that of `Global.pretrain_weights`, that is, when two parameters are specified at the same time, the model specified by `Global.checkpoints` will be loaded first. If the model path specified by `Global.checkpoints` is wrong, the one specified by `Global.pretrain_weights` will be loaded.
W
WenmuZhou 已提交
68

W
WenmuZhou 已提交
69
### 2.3 Eval
W
WenmuZhou 已提交
70 71 72

The table uses TEDS (Tree-Edit-Distance-based Similarity) as the evaluation metric of the model. Before the model evaluation, the three models in the pipeline need to be exported as inference models (we have provided them), and the gt for evaluation needs to be prepared. Examples of gt are as follows:
```json
W
WenmuZhou 已提交
73 74 75 76 77
{"PMC4289340_004_00.png": [
  ["<html>", "<body>", "<table>", "<thead>", "<tr>", "<td>", "</td>", "<td>", "</td>", "<td>", "</td>", "</tr>", "</thead>", "<tbody>", "<tr>", "<td>", "</td>", "<td>", "</td>", "<td>", "</td>", "</tr>",  "</tbody>", "</table>", "</body>", "</html>"], 
  [[1, 4, 29, 13], [137, 4, 161, 13], [215, 4, 236, 13], [1, 17, 30, 27], [137, 17, 147, 27], [215, 17, 225, 27]], 
  [["<b>", "F", "e", "a", "t", "u", "r", "e", "</b>"], ["<b>", "G", "b", "3", " ", "+", "</b>"], ["<b>", "G", "b", "3", " ", "-", "</b>"], ["<b>", "P", "a", "t", "i", "e", "n", "t", "s", "</b>"], ["6", "2"], ["4", "5"]]
]}
W
WenmuZhou 已提交
78 79 80 81 82 83 84 85
```
In gt json, the key is the image name, the value is the corresponding gt, and gt is a list composed of four items, and each item is
1. HTML string list of table structure
2. The coordinates of each cell (not including the empty text in the cell)
3. The text information in each cell (not including the empty text in the cell)

Use the following command to evaluate. After the evaluation is completed, the teds indicator will be output.
```python
W
WenmuZhou 已提交
86
cd PaddleOCR/ppstructure
W
WenmuZhou 已提交
87
python3 table/eval_table.py --det_model_dir=path/to/det_model_dir --rec_model_dir=path/to/rec_model_dir --table_model_dir=path/to/table_model_dir --image_dir=../doc/table/1.png --rec_char_dict_path=../ppocr/utils/dict/table_dict.txt --table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt --rec_char_type=EN --det_limit_side_len=736 --det_limit_type=min --gt_path=path/to/gt.json
W
WenmuZhou 已提交
88 89 90
```


W
WenmuZhou 已提交
91
### 2.4 Inference
W
WenmuZhou 已提交
92 93

```python
W
WenmuZhou 已提交
94
cd PaddleOCR/ppstructure
W
WenmuZhou 已提交
95
python3 table/predict_table.py --det_model_dir=path/to/det_model_dir --rec_model_dir=path/to/rec_model_dir --table_model_dir=path/to/table_model_dir --image_dir=../doc/table/1.png --rec_char_dict_path=../ppocr/utils/dict/table_dict.txt --table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt --rec_char_type=EN --det_limit_side_len=736 --det_limit_type=min --output ../output/table
W
WenmuZhou 已提交
96
```
M
MissPenguin 已提交
97
After running, the excel sheet of each picture will be saved in the directory specified by the output field