proposal_local_graph.py 17.2 KB
Newer Older
z37757's avatar
z37757 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from:
https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textdet/modules/proposal_local_graph.py
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import cv2
import numpy as np
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from lanms import merge_quadrangle_n9 as la_nms

from ppocr.ext_op import RoIAlignRotated
from .local_graph import (euclidean_distance_matrix, feature_embedding,
                          normalize_adjacent_matrix)


def fill_hole(input_mask):
    h, w = input_mask.shape
    canvas = np.zeros((h + 2, w + 2), np.uint8)
    canvas[1:h + 1, 1:w + 1] = input_mask.copy()

    mask = np.zeros((h + 4, w + 4), np.uint8)

    cv2.floodFill(canvas, mask, (0, 0), 1)
A
andyj 已提交
43
    canvas = canvas[1:h + 1, 1:w + 1].astype(np.bool_)
z37757's avatar
z37757 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412

    return ~canvas | input_mask


class ProposalLocalGraphs:
    def __init__(self, k_at_hops, num_adjacent_linkages, node_geo_feat_len,
                 pooling_scale, pooling_output_size, nms_thr, min_width,
                 max_width, comp_shrink_ratio, comp_w_h_ratio, comp_score_thr,
                 text_region_thr, center_region_thr, center_region_area_thr):

        assert len(k_at_hops) == 2
        assert isinstance(k_at_hops, tuple)
        assert isinstance(num_adjacent_linkages, int)
        assert isinstance(node_geo_feat_len, int)
        assert isinstance(pooling_scale, float)
        assert isinstance(pooling_output_size, tuple)
        assert isinstance(nms_thr, float)
        assert isinstance(min_width, float)
        assert isinstance(max_width, float)
        assert isinstance(comp_shrink_ratio, float)
        assert isinstance(comp_w_h_ratio, float)
        assert isinstance(comp_score_thr, float)
        assert isinstance(text_region_thr, float)
        assert isinstance(center_region_thr, float)
        assert isinstance(center_region_area_thr, int)

        self.k_at_hops = k_at_hops
        self.active_connection = num_adjacent_linkages
        self.local_graph_depth = len(self.k_at_hops)
        self.node_geo_feat_dim = node_geo_feat_len
        self.pooling = RoIAlignRotated(pooling_output_size, pooling_scale)
        self.nms_thr = nms_thr
        self.min_width = min_width
        self.max_width = max_width
        self.comp_shrink_ratio = comp_shrink_ratio
        self.comp_w_h_ratio = comp_w_h_ratio
        self.comp_score_thr = comp_score_thr
        self.text_region_thr = text_region_thr
        self.center_region_thr = center_region_thr
        self.center_region_area_thr = center_region_area_thr

    def propose_comps(self, score_map, top_height_map, bot_height_map, sin_map,
                      cos_map, comp_score_thr, min_width, max_width,
                      comp_shrink_ratio, comp_w_h_ratio):
        """Propose text components.

        Args:
            score_map (ndarray): The score map for NMS.
            top_height_map (ndarray): The predicted text height map from each
                pixel in text center region to top sideline.
            bot_height_map (ndarray): The predicted text height map from each
                pixel in text center region to bottom sideline.
            sin_map (ndarray): The predicted sin(theta) map.
            cos_map (ndarray): The predicted cos(theta) map.
            comp_score_thr (float): The score threshold of text component.
            min_width (float): The minimum width of text components.
            max_width (float): The maximum width of text components.
            comp_shrink_ratio (float): The shrink ratio of text components.
            comp_w_h_ratio (float): The width to height ratio of text
                components.

        Returns:
            text_comps (ndarray): The text components.
        """

        comp_centers = np.argwhere(score_map > comp_score_thr)
        comp_centers = comp_centers[np.argsort(comp_centers[:, 0])]
        y = comp_centers[:, 0]
        x = comp_centers[:, 1]

        top_height = top_height_map[y, x].reshape((-1, 1)) * comp_shrink_ratio
        bot_height = bot_height_map[y, x].reshape((-1, 1)) * comp_shrink_ratio
        sin = sin_map[y, x].reshape((-1, 1))
        cos = cos_map[y, x].reshape((-1, 1))

        top_mid_pts = comp_centers + np.hstack(
            [top_height * sin, top_height * cos])
        bot_mid_pts = comp_centers - np.hstack(
            [bot_height * sin, bot_height * cos])

        width = (top_height + bot_height) * comp_w_h_ratio
        width = np.clip(width, min_width, max_width)
        r = width / 2

        tl = top_mid_pts[:, ::-1] - np.hstack([-r * sin, r * cos])
        tr = top_mid_pts[:, ::-1] + np.hstack([-r * sin, r * cos])
        br = bot_mid_pts[:, ::-1] + np.hstack([-r * sin, r * cos])
        bl = bot_mid_pts[:, ::-1] - np.hstack([-r * sin, r * cos])
        text_comps = np.hstack([tl, tr, br, bl]).astype(np.float32)

        score = score_map[y, x].reshape((-1, 1))
        text_comps = np.hstack([text_comps, score])

        return text_comps

    def propose_comps_and_attribs(self, text_region_map, center_region_map,
                                  top_height_map, bot_height_map, sin_map,
                                  cos_map):
        """Generate text components and attributes.

        Args:
            text_region_map (ndarray): The predicted text region probability
                map.
            center_region_map (ndarray): The predicted text center region
                probability map.
            top_height_map (ndarray): The predicted text height map from each
                pixel in text center region to top sideline.
            bot_height_map (ndarray): The predicted text height map from each
                pixel in text center region to bottom sideline.
            sin_map (ndarray): The predicted sin(theta) map.
            cos_map (ndarray): The predicted cos(theta) map.

        Returns:
            comp_attribs (ndarray): The text component attributes.
            text_comps (ndarray): The text components.
        """

        assert (text_region_map.shape == center_region_map.shape ==
                top_height_map.shape == bot_height_map.shape == sin_map.shape ==
                cos_map.shape)
        text_mask = text_region_map > self.text_region_thr
        center_region_mask = (
            center_region_map > self.center_region_thr) * text_mask

        scale = np.sqrt(1.0 / (sin_map**2 + cos_map**2 + 1e-8))
        sin_map, cos_map = sin_map * scale, cos_map * scale

        center_region_mask = fill_hole(center_region_mask)
        center_region_contours, _ = cv2.findContours(
            center_region_mask.astype(np.uint8), cv2.RETR_TREE,
            cv2.CHAIN_APPROX_SIMPLE)

        mask_sz = center_region_map.shape
        comp_list = []
        for contour in center_region_contours:
            current_center_mask = np.zeros(mask_sz)
            cv2.drawContours(current_center_mask, [contour], -1, 1, -1)
            if current_center_mask.sum() <= self.center_region_area_thr:
                continue
            score_map = text_region_map * current_center_mask

            text_comps = self.propose_comps(
                score_map, top_height_map, bot_height_map, sin_map, cos_map,
                self.comp_score_thr, self.min_width, self.max_width,
                self.comp_shrink_ratio, self.comp_w_h_ratio)

            text_comps = la_nms(text_comps, self.nms_thr)
            text_comp_mask = np.zeros(mask_sz)
            text_comp_boxes = text_comps[:, :8].reshape(
                (-1, 4, 2)).astype(np.int32)

            cv2.drawContours(text_comp_mask, text_comp_boxes, -1, 1, -1)
            if (text_comp_mask * text_mask).sum() < text_comp_mask.sum() * 0.5:
                continue
            if text_comps.shape[-1] > 0:
                comp_list.append(text_comps)

        if len(comp_list) <= 0:
            return None, None

        text_comps = np.vstack(comp_list)
        text_comp_boxes = text_comps[:, :8].reshape((-1, 4, 2))
        centers = np.mean(text_comp_boxes, axis=1).astype(np.int32)
        x = centers[:, 0]
        y = centers[:, 1]

        scores = []
        for text_comp_box in text_comp_boxes:
            text_comp_box[:, 0] = np.clip(text_comp_box[:, 0], 0,
                                          mask_sz[1] - 1)
            text_comp_box[:, 1] = np.clip(text_comp_box[:, 1], 0,
                                          mask_sz[0] - 1)
            min_coord = np.min(text_comp_box, axis=0).astype(np.int32)
            max_coord = np.max(text_comp_box, axis=0).astype(np.int32)
            text_comp_box = text_comp_box - min_coord
            box_sz = (max_coord - min_coord + 1)
            temp_comp_mask = np.zeros((box_sz[1], box_sz[0]), dtype=np.uint8)
            cv2.fillPoly(temp_comp_mask, [text_comp_box.astype(np.int32)], 1)
            temp_region_patch = text_region_map[min_coord[1]:(max_coord[1] + 1),
                                                min_coord[0]:(max_coord[0] + 1)]
            score = cv2.mean(temp_region_patch, temp_comp_mask)[0]
            scores.append(score)
        scores = np.array(scores).reshape((-1, 1))
        text_comps = np.hstack([text_comps[:, :-1], scores])

        h = top_height_map[y, x].reshape(
            (-1, 1)) + bot_height_map[y, x].reshape((-1, 1))
        w = np.clip(h * self.comp_w_h_ratio, self.min_width, self.max_width)
        sin = sin_map[y, x].reshape((-1, 1))
        cos = cos_map[y, x].reshape((-1, 1))

        x = x.reshape((-1, 1))
        y = y.reshape((-1, 1))
        comp_attribs = np.hstack([x, y, h, w, cos, sin])

        return comp_attribs, text_comps

    def generate_local_graphs(self, sorted_dist_inds, node_feats):
        """Generate local graphs and graph convolution network input data.

        Args:
            sorted_dist_inds (ndarray): The node indices sorted according to
                the Euclidean distance.
            node_feats (tensor): The features of nodes in graph.

        Returns:
            local_graphs_node_feats (tensor): The features of nodes in local
                graphs.
            adjacent_matrices (tensor): The adjacent matrices.
            pivots_knn_inds (tensor): The k-nearest neighbor indices in
                local graphs.
            pivots_local_graphs (tensor): The indices of nodes in local
                graphs.
        """

        assert sorted_dist_inds.ndim == 2
        assert (sorted_dist_inds.shape[0] == sorted_dist_inds.shape[1] ==
                node_feats.shape[0])

        knn_graph = sorted_dist_inds[:, 1:self.k_at_hops[0] + 1]
        pivot_local_graphs = []
        pivot_knns = []

        for pivot_ind, knn in enumerate(knn_graph):

            local_graph_neighbors = set(knn)

            for neighbor_ind in knn:
                local_graph_neighbors.update(
                    set(sorted_dist_inds[neighbor_ind, 1:self.k_at_hops[1] +
                                         1]))

            local_graph_neighbors.discard(pivot_ind)
            pivot_local_graph = list(local_graph_neighbors)
            pivot_local_graph.insert(0, pivot_ind)
            pivot_knn = [pivot_ind] + list(knn)

            pivot_local_graphs.append(pivot_local_graph)
            pivot_knns.append(pivot_knn)

        num_max_nodes = max([
            len(pivot_local_graph) for pivot_local_graph in pivot_local_graphs
        ])

        local_graphs_node_feat = []
        adjacent_matrices = []
        pivots_knn_inds = []
        pivots_local_graphs = []

        for graph_ind, pivot_knn in enumerate(pivot_knns):
            pivot_local_graph = pivot_local_graphs[graph_ind]
            num_nodes = len(pivot_local_graph)
            pivot_ind = pivot_local_graph[0]
            node2ind_map = {j: i for i, j in enumerate(pivot_local_graph)}

            knn_inds = paddle.cast(
                paddle.to_tensor([node2ind_map[i]
                                  for i in pivot_knn[1:]]), 'int64')
            pivot_feats = node_feats[pivot_ind]
            normalized_feats = node_feats[paddle.to_tensor(
                pivot_local_graph)] - pivot_feats

            adjacent_matrix = np.zeros((num_nodes, num_nodes), dtype=np.float32)
            for node in pivot_local_graph:
                neighbors = sorted_dist_inds[node, 1:self.active_connection + 1]
                for neighbor in neighbors:
                    if neighbor in pivot_local_graph:
                        adjacent_matrix[node2ind_map[node], node2ind_map[
                            neighbor]] = 1
                        adjacent_matrix[node2ind_map[neighbor], node2ind_map[
                            node]] = 1

            adjacent_matrix = normalize_adjacent_matrix(adjacent_matrix)
            pad_adjacent_matrix = paddle.zeros((num_max_nodes, num_max_nodes), )
            pad_adjacent_matrix[:num_nodes, :num_nodes] = paddle.cast(
                paddle.to_tensor(adjacent_matrix), 'float32')

            pad_normalized_feats = paddle.concat(
                [
                    normalized_feats, paddle.zeros(
                        (num_max_nodes - num_nodes, normalized_feats.shape[1]),
                    )
                ],
                axis=0)

            local_graph_nodes = paddle.to_tensor(pivot_local_graph)
            local_graph_nodes = paddle.concat(
                [
                    local_graph_nodes, paddle.zeros(
                        [num_max_nodes - num_nodes], dtype='int64')
                ],
                axis=-1)

            local_graphs_node_feat.append(pad_normalized_feats)
            adjacent_matrices.append(pad_adjacent_matrix)
            pivots_knn_inds.append(knn_inds)
            pivots_local_graphs.append(local_graph_nodes)

        local_graphs_node_feat = paddle.stack(local_graphs_node_feat, 0)
        adjacent_matrices = paddle.stack(adjacent_matrices, 0)
        pivots_knn_inds = paddle.stack(pivots_knn_inds, 0)
        pivots_local_graphs = paddle.stack(pivots_local_graphs, 0)

        return (local_graphs_node_feat, adjacent_matrices, pivots_knn_inds,
                pivots_local_graphs)

    def __call__(self, preds, feat_maps):
        """Generate local graphs and graph convolutional network input data.

        Args:
            preds (tensor): The predicted maps.
            feat_maps (tensor): The feature maps to extract content feature of
                text components.

        Returns:
            none_flag (bool): The flag showing whether the number of proposed
                text components is 0.
            local_graphs_node_feats (tensor): The features of nodes in local
                graphs.
            adjacent_matrices (tensor): The adjacent matrices.
            pivots_knn_inds (tensor): The k-nearest neighbor indices in
                local graphs.
            pivots_local_graphs (tensor): The indices of nodes in local
                graphs.
            text_comps (ndarray): The predicted text components.
        """
        if preds.ndim == 4:
            assert preds.shape[0] == 1
            preds = paddle.squeeze(preds)
        pred_text_region = F.sigmoid(preds[0]).numpy()
        pred_center_region = F.sigmoid(preds[1]).numpy()
        pred_sin_map = preds[2].numpy()
        pred_cos_map = preds[3].numpy()
        pred_top_height_map = preds[4].numpy()
        pred_bot_height_map = preds[5].numpy()

        comp_attribs, text_comps = self.propose_comps_and_attribs(
            pred_text_region, pred_center_region, pred_top_height_map,
            pred_bot_height_map, pred_sin_map, pred_cos_map)

        if comp_attribs is None or len(comp_attribs) < 2:
            none_flag = True
            return none_flag, (0, 0, 0, 0, 0)

        comp_centers = comp_attribs[:, 0:2]
        distance_matrix = euclidean_distance_matrix(comp_centers, comp_centers)

        geo_feats = feature_embedding(comp_attribs, self.node_geo_feat_dim)
        geo_feats = paddle.to_tensor(geo_feats)

        batch_id = np.zeros((comp_attribs.shape[0], 1), dtype=np.float32)
        comp_attribs = comp_attribs.astype(np.float32)
        angle = np.arccos(comp_attribs[:, -2]) * np.sign(comp_attribs[:, -1])
        angle = angle.reshape((-1, 1))
        rotated_rois = np.hstack([batch_id, comp_attribs[:, :-2], angle])
        rois = paddle.to_tensor(rotated_rois)

        content_feats = self.pooling(feat_maps, rois)
        content_feats = content_feats.reshape([content_feats.shape[0], -1])
        node_feats = paddle.concat([content_feats, geo_feats], axis=-1)

        sorted_dist_inds = np.argsort(distance_matrix, axis=1)
        (local_graphs_node_feat, adjacent_matrices, pivots_knn_inds,
         pivots_local_graphs) = self.generate_local_graphs(sorted_dist_inds,
                                                           node_feats)

        none_flag = False
        return none_flag, (local_graphs_node_feat, adjacent_matrices,
                           pivots_knn_inds, pivots_local_graphs, text_comps)