algorithm_det_sast_en.md 3.6 KB
Newer Older
H
huangjun12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# SAST

- [1. Introduction](#1)
- [2. Environment](#2)
- [3. Model Training / Evaluation / Prediction](#3)
    - [3.1 Training](#3-1)
    - [3.2 Evaluation](#3-2)
    - [3.3 Prediction](#3-3)
- [4. Inference and Deployment](#4)
    - [4.1 Python Inference](#4-1)
- [5. FAQ](#5)

<a name="1"></a>
## 1. Introduction

Paper:
> [A Single-Shot Arbitrarily-Shaped Text Detector based on Context Attended Multi-Task Learning](https://arxiv.org/abs/1908.05498)
> Wang, Pengfei and Zhang, Chengquan and Qi, Fei and Huang, Zuming and En, Mengyi and Han, Junyu and Liu, Jingtuo and Ding, Errui and Shi, Guangming
> ACM MM, 2019

On the ICDAR2015 dataset, the text detection result is as follows:

|Model|Backbone|Configuration|Precision|Recall|Hmean|Download|
| --- | --- | --- | --- | --- | --- | --- |
H
huangjun12 已提交
25
|SAST|ResNet50_vd|[configs/det/det_r50_vd_sast_icdar15.yml](../../configs/det/det_r50_vd_sast_icdar15.yml)|91.39%|83.77%|87.42%|[trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_icdar15_v2.0_train.tar)|
H
huangjun12 已提交
26 27 28 29 30 31


On the Total-text dataset, the text detection result is as follows:

|Model|Backbone|Configuration|Precision|Recall|Hmean|Download|
| --- | --- | --- | --- | --- | --- | --- |
H
huangjun12 已提交
32
|SAST|ResNet50_vd|[configs/det/det_r50_vd_sast_totaltext.yml](../../configs/det/det_r50_vd_sast_totaltext.yml)|89.63%|78.44%|83.66%|[trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_totaltext_v2.0_train.tar)|
H
huangjun12 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83


<a name="2"></a>
## 2. Environment
Please prepare your environment referring to [prepare the environment](./environment_en.md) and [clone the repo](./clone_en.md).


<a name="3"></a>
## 3. Model Training / Evaluation / Prediction

Please refer to [text detection training tutorial](./detection_en.md). PaddleOCR has modularized the code structure, so that you only need to **replace the configuration file** to train different detection models.

<a name="4"></a>
## 4. Inference and Deployment

<a name="4-1"></a>
### 4.1 Python Inference
First, convert the model saved in the SAST text detection training process into an inference model. Taking the model based on the Resnet50_vd backbone network and trained on the ICDAR2015 English dataset as example ([model download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_icdar15_v2.0_train.tar)), you can use the following command to convert:

```shell
python3 tools/export_model.py -c configs/det/det_r50_vd_sast_icdar15.yml -o Global.pretrained_model=./det_r50_vd_sast_icdar15_v2.0_train/best_accuracy  Global.save_inference_dir=./inference/det_sast
```

SAST text detection model inference, you can execute the following command:

```shell
python3 tools/infer/predict_det.py --image_dir="./doc/imgs_en/img_10.jpg" --det_model_dir="./inference/det_sast/"
```

The visualized text detection results are saved to the `./inference_results` folder by default, and the name of the result file is prefixed with 'det_res'. Examples of results are as follows:

![](../imgs_results/det_res_img_10_sast.jpg)

**Note**: Since the ICDAR2015 dataset has only 1,000 training images, mainly for English scenes, the above model has very poor detection result on Chinese text images.


<a name="5"></a>
## 5. FAQ


## Citation

```bibtex
@inproceedings{wang2019single,
  title={A Single-Shot Arbitrarily-Shaped Text Detector based on Context Attended Multi-Task Learning},
  author={Wang, Pengfei and Zhang, Chengquan and Qi, Fei and Huang, Zuming and En, Mengyi and Han, Junyu and Liu, Jingtuo and Ding, Errui and Shi, Guangming},
  booktitle={Proceedings of the 27th ACM International Conference on Multimedia},
  pages={1277--1285},
  year={2019}
}
```