eval_with_label_end2end.py 8.1 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import re
import sys
import shapely
from shapely.geometry import Polygon
import numpy as np
from collections import defaultdict
import operator
23
from rapidfuzz.distance import Levenshtein
littletomatodonkey's avatar
littletomatodonkey 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
import argparse
import json
import copy


def parse_ser_results_fp(fp, fp_type="gt", ignore_background=True):
    # img/zh_val_0.jpg        {
    #     "height": 3508,
    #     "width": 2480,
    #     "ocr_info": [
    #         {"text": "Maribyrnong", "label": "other", "bbox": [1958, 144, 2184, 198]},
    #         {"text": "CITYCOUNCIL", "label": "other", "bbox": [2052, 183, 2171, 214]},
    #     ]
    assert fp_type in ["gt", "pred"]
    key = "label" if fp_type == "gt" else "pred"
    res_dict = dict()
文幕地方's avatar
文幕地方 已提交
40
    with open(fp, "r", encoding='utf-8') as fin:
littletomatodonkey's avatar
littletomatodonkey 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
        lines = fin.readlines()

    for _, line in enumerate(lines):
        img_path, info = line.strip().split("\t")
        # get key
        image_name = os.path.basename(img_path)
        res_dict[image_name] = []
        # get infos
        json_info = json.loads(info)
        for single_ocr_info in json_info["ocr_info"]:
            label = single_ocr_info[key].upper()
            if label in ["O", "OTHERS", "OTHER"]:
                label = "O"
            if ignore_background and label == "O":
                continue
            single_ocr_info["label"] = label
            res_dict[image_name].append(copy.deepcopy(single_ocr_info))
    return res_dict


def polygon_from_str(polygon_points):
    """
    Create a shapely polygon object from gt or dt line.
    """
    polygon_points = np.array(polygon_points).reshape(4, 2)
    polygon = Polygon(polygon_points).convex_hull
    return polygon


def polygon_iou(poly1, poly2):
    """
    Intersection over union between two shapely polygons.
    """
    if not poly1.intersects(
            poly2):  # this test is fast and can accelerate calculation
        iou = 0
    else:
        try:
            inter_area = poly1.intersection(poly2).area
            union_area = poly1.area + poly2.area - inter_area
            iou = float(inter_area) / union_area
        except shapely.geos.TopologicalError:
            # except Exception as e:
            #     print(e)
85
            print('shapely.geos.TopologicalError occurred, iou set to 0')
littletomatodonkey's avatar
littletomatodonkey 已提交
86 87 88 89 90 91 92 93 94 95 96
            iou = 0
    return iou


def ed(args, str1, str2):
    if args.ignore_space:
        str1 = str1.replace(" ", "")
        str2 = str2.replace(" ", "")
    if args.ignore_case:
        str1 = str1.lower()
        str2 = str2.lower()
文幕地方's avatar
文幕地方 已提交
97
    return Levenshtein.distance(str1, str2)
littletomatodonkey's avatar
littletomatodonkey 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123


def convert_bbox_to_polygon(bbox):
    """
    bbox  : [x1, y1, x2, y2]
    output: [[x1, y1], [x2, y2], [x3, y3], [x4, y4]]
    """
    xmin, ymin, xmax, ymax = bbox
    poly = [[xmin, ymin], [xmax, ymin], [xmax, ymax], [xmin, ymax]]
    return poly


def eval_e2e(args):
    # gt
    gt_results = parse_ser_results_fp(args.gt_json_path, "gt",
                                      args.ignore_background)
    # pred
    dt_results = parse_ser_results_fp(args.pred_json_path, "pred",
                                      args.ignore_background)
    iou_thresh = args.iou_thres
    num_gt_chars = 0
    gt_count = 0
    dt_count = 0
    hit = 0
    ed_sum = 0

文幕地方's avatar
文幕地方 已提交
124
    for img_name in dt_results:
littletomatodonkey's avatar
littletomatodonkey 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
        gt_info = gt_results[img_name]
        gt_count += len(gt_info)

        dt_info = dt_results[img_name]
        dt_count += len(dt_info)

        dt_match = [False] * len(dt_info)
        gt_match = [False] * len(gt_info)

        all_ious = defaultdict(tuple)
        # gt: {text, label, bbox or poly}
        for index_gt, gt in enumerate(gt_info):
            if "poly" not in gt:
                gt["poly"] = convert_bbox_to_polygon(gt["bbox"])
            gt_poly = polygon_from_str(gt["poly"])
            for index_dt, dt in enumerate(dt_info):
                if "poly" not in dt:
                    dt["poly"] = convert_bbox_to_polygon(dt["bbox"])
                dt_poly = polygon_from_str(dt["poly"])
                iou = polygon_iou(dt_poly, gt_poly)
                if iou >= iou_thresh:
                    all_ious[(index_gt, index_dt)] = iou
        sorted_ious = sorted(
            all_ious.items(), key=operator.itemgetter(1), reverse=True)
        sorted_gt_dt_pairs = [item[0] for item in sorted_ious]

        # matched gt and dt
        for gt_dt_pair in sorted_gt_dt_pairs:
            index_gt, index_dt = gt_dt_pair
            if gt_match[index_gt] == False and dt_match[index_dt] == False:
                gt_match[index_gt] = True
                dt_match[index_dt] = True
                # ocr rec results
                gt_text = gt_info[index_gt]["text"]
                dt_text = dt_info[index_dt]["text"]

                # ser results
                gt_label = gt_info[index_gt]["label"]
                dt_label = dt_info[index_dt]["pred"]

                if True:  # ignore_masks[index_gt] == '0':
                    ed_sum += ed(args, gt_text, dt_text)
                    num_gt_chars += len(gt_text)
                    if gt_text == dt_text:
                        if args.ignore_ser_prediction or gt_label == dt_label:
                            hit += 1

# unmatched dt
        for tindex, dt_match_flag in enumerate(dt_match):
            if dt_match_flag == False:
                dt_text = dt_info[tindex]["text"]
                gt_text = ""
                ed_sum += ed(args, dt_text, gt_text)

# unmatched gt
        for tindex, gt_match_flag in enumerate(gt_match):
            if gt_match_flag == False:
                dt_text = ""
                gt_text = gt_info[tindex]["text"]
                ed_sum += ed(args, gt_text, dt_text)
                num_gt_chars += len(gt_text)

    eps = 1e-9
    print("config: ", args)
    print('hit, dt_count, gt_count', hit, dt_count, gt_count)
    precision = hit / (dt_count + eps)
    recall = hit / (gt_count + eps)
    fmeasure = 2.0 * precision * recall / (precision + recall + eps)
    avg_edit_dist_img = ed_sum / len(gt_results)
    avg_edit_dist_field = ed_sum / (gt_count + eps)
    character_acc = 1 - ed_sum / (num_gt_chars + eps)

    print('character_acc: %.2f' % (character_acc * 100) + "%")
    print('avg_edit_dist_field: %.2f' % (avg_edit_dist_field))
    print('avg_edit_dist_img: %.2f' % (avg_edit_dist_img))
    print('precision: %.2f' % (precision * 100) + "%")
    print('recall: %.2f' % (recall * 100) + "%")
    print('fmeasure: %.2f' % (fmeasure * 100) + "%")

    return


def parse_args():
    """
    """

    def str2bool(v):
        return v.lower() in ("true", "t", "1")

    parser = argparse.ArgumentParser()
    ## Required parameters
    parser.add_argument(
        "--gt_json_path",
        default=None,
        type=str,
        required=True, )
    parser.add_argument(
        "--pred_json_path",
        default=None,
        type=str,
        required=True, )

    parser.add_argument("--iou_thres", default=0.5, type=float)

    parser.add_argument(
        "--ignore_case",
        default=False,
        type=str2bool,
        help="whether to do lower case for the strs")

    parser.add_argument(
        "--ignore_space",
        default=True,
        type=str2bool,
        help="whether to ignore space")

    parser.add_argument(
        "--ignore_background",
        default=True,
        type=str2bool,
        help="whether to ignore other label")

    parser.add_argument(
        "--ignore_ser_prediction",
        default=False,
        type=str2bool,
        help="whether to ignore ocr pred results")

    args = parser.parse_args()
    return args


if __name__ == '__main__':
    args = parse_args()
    eval_e2e(args)