e2e_pg_head.py 7.6 KB
Newer Older
1
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
J
Jethong 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math
import paddle
from paddle import nn
import paddle.nn.functional as F
from paddle import ParamAttr


class ConvBNLayer(nn.Layer):
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride,
                 padding,
                 groups=1,
                 if_act=True,
                 act=None,
                 name=None):
        super(ConvBNLayer, self).__init__()
        self.if_act = if_act
        self.act = act
        self.conv = nn.Conv2D(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=kernel_size,
            stride=stride,
            padding=padding,
            groups=groups,
            weight_attr=ParamAttr(name=name + '_weights'),
            bias_attr=False)

        self.bn = nn.BatchNorm(
            num_channels=out_channels,
            act=act,
            param_attr=ParamAttr(name="bn_" + name + "_scale"),
            bias_attr=ParamAttr(name="bn_" + name + "_offset"),
            moving_mean_name="bn_" + name + "_mean",
            moving_variance_name="bn_" + name + "_variance",
            use_global_stats=False)

    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        return x


class PGHead(nn.Layer):
    """
    """

J
Jethong 已提交
69
    def __init__(self, in_channels, **kwargs):
J
Jethong 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
        super(PGHead, self).__init__()
        self.conv_f_score1 = ConvBNLayer(
            in_channels=in_channels,
            out_channels=64,
            kernel_size=1,
            stride=1,
            padding=0,
            act='relu',
            name="conv_f_score{}".format(1))
        self.conv_f_score2 = ConvBNLayer(
            in_channels=64,
            out_channels=64,
            kernel_size=3,
            stride=1,
            padding=1,
            act='relu',
            name="conv_f_score{}".format(2))
        self.conv_f_score3 = ConvBNLayer(
            in_channels=64,
            out_channels=128,
            kernel_size=1,
            stride=1,
            padding=0,
            act='relu',
            name="conv_f_score{}".format(3))

        self.conv1 = nn.Conv2D(
            in_channels=128,
            out_channels=1,
            kernel_size=3,
            stride=1,
            padding=1,
            groups=1,
            weight_attr=ParamAttr(name="conv_f_score{}".format(4)),
            bias_attr=False)

        self.conv_f_boder1 = ConvBNLayer(
            in_channels=in_channels,
            out_channels=64,
            kernel_size=1,
            stride=1,
            padding=0,
            act='relu',
            name="conv_f_boder{}".format(1))
        self.conv_f_boder2 = ConvBNLayer(
            in_channels=64,
            out_channels=64,
            kernel_size=3,
            stride=1,
            padding=1,
            act='relu',
            name="conv_f_boder{}".format(2))
        self.conv_f_boder3 = ConvBNLayer(
            in_channels=64,
            out_channels=128,
            kernel_size=1,
            stride=1,
            padding=0,
            act='relu',
            name="conv_f_boder{}".format(3))
        self.conv2 = nn.Conv2D(
            in_channels=128,
            out_channels=4,
            kernel_size=3,
            stride=1,
            padding=1,
            groups=1,
            weight_attr=ParamAttr(name="conv_f_boder{}".format(4)),
            bias_attr=False)
        self.conv_f_char1 = ConvBNLayer(
            in_channels=in_channels,
            out_channels=128,
            kernel_size=1,
            stride=1,
            padding=0,
            act='relu',
            name="conv_f_char{}".format(1))
        self.conv_f_char2 = ConvBNLayer(
            in_channels=128,
            out_channels=128,
            kernel_size=3,
            stride=1,
            padding=1,
            act='relu',
            name="conv_f_char{}".format(2))
        self.conv_f_char3 = ConvBNLayer(
            in_channels=128,
            out_channels=256,
            kernel_size=1,
            stride=1,
            padding=0,
            act='relu',
            name="conv_f_char{}".format(3))
        self.conv_f_char4 = ConvBNLayer(
            in_channels=256,
            out_channels=256,
            kernel_size=3,
            stride=1,
            padding=1,
            act='relu',
            name="conv_f_char{}".format(4))
        self.conv_f_char5 = ConvBNLayer(
            in_channels=256,
            out_channels=256,
            kernel_size=1,
            stride=1,
            padding=0,
            act='relu',
            name="conv_f_char{}".format(5))
        self.conv3 = nn.Conv2D(
            in_channels=256,
181
            out_channels=37,
J
Jethong 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
            kernel_size=3,
            stride=1,
            padding=1,
            groups=1,
            weight_attr=ParamAttr(name="conv_f_char{}".format(6)),
            bias_attr=False)

        self.conv_f_direc1 = ConvBNLayer(
            in_channels=in_channels,
            out_channels=64,
            kernel_size=1,
            stride=1,
            padding=0,
            act='relu',
            name="conv_f_direc{}".format(1))
        self.conv_f_direc2 = ConvBNLayer(
            in_channels=64,
            out_channels=64,
            kernel_size=3,
            stride=1,
            padding=1,
            act='relu',
            name="conv_f_direc{}".format(2))
        self.conv_f_direc3 = ConvBNLayer(
            in_channels=64,
            out_channels=128,
            kernel_size=1,
            stride=1,
            padding=0,
            act='relu',
            name="conv_f_direc{}".format(3))
        self.conv4 = nn.Conv2D(
            in_channels=128,
            out_channels=2,
            kernel_size=3,
            stride=1,
            padding=1,
            groups=1,
            weight_attr=ParamAttr(name="conv_f_direc{}".format(4)),
            bias_attr=False)

    def forward(self, x):
        f_score = self.conv_f_score1(x)
        f_score = self.conv_f_score2(f_score)
        f_score = self.conv_f_score3(f_score)
        f_score = self.conv1(f_score)
        f_score = F.sigmoid(f_score)

J
Jethong 已提交
230 231 232 233 234
        # f_border
        f_border = self.conv_f_boder1(x)
        f_border = self.conv_f_boder2(f_border)
        f_border = self.conv_f_boder3(f_border)
        f_border = self.conv2(f_border)
J
Jethong 已提交
235 236 237 238 239 240 241 242 243 244 245 246 247

        f_char = self.conv_f_char1(x)
        f_char = self.conv_f_char2(f_char)
        f_char = self.conv_f_char3(f_char)
        f_char = self.conv_f_char4(f_char)
        f_char = self.conv_f_char5(f_char)
        f_char = self.conv3(f_char)

        f_direction = self.conv_f_direc1(x)
        f_direction = self.conv_f_direc2(f_direction)
        f_direction = self.conv_f_direc3(f_direction)
        f_direction = self.conv4(f_direction)

J
Jethong 已提交
248 249 250 251 252 253
        predicts = {}
        predicts['f_score'] = f_score
        predicts['f_border'] = f_border
        predicts['f_char'] = f_char
        predicts['f_direction'] = f_direction
        return predicts