config_en.md 18.8 KB
Newer Older
fanruinet's avatar
fanruinet 已提交
1
# Configuration
2 3

- [1. Optional Parameter List](#1-optional-parameter-list)
fanruinet's avatar
fanruinet 已提交
4
- [2. Introduction to Global Parameters of Configuration File](#2-introduction-to-global-parameters-of-configuration-file)
5 6 7 8 9
- [3. Multilingual Config File Generation](#3-multilingual-config-file-generation)

<a name="1-optional-parameter-list"></a>

## 1. Optional Parameter List
K
Khanh Tran 已提交
10

W
WenmuZhou 已提交
11
The following list can be viewed through `--help`
K
Khanh Tran 已提交
12 13 14

|         FLAG             |     Supported script    |        Use        |      Defaults       |         Note         |
| :----------------------: | :------------: | :---------------: | :--------------: | :-----------------: |
W
WenmuZhou 已提交
15 16
|          -c              |      ALL       |  Specify configuration file to use  |  None  |  **Please refer to the parameter introduction for configuration file usage** |
|          -o              |      ALL       |  set configuration options  |  None  |  Configuration using -o has higher priority than the configuration file selected with -c. E.g: -o Global.use_gpu=false |
K
Khanh Tran 已提交
17

fanruinet's avatar
fanruinet 已提交
18
<a name="2-introduction-to-global-parameters-of-configuration-file"></a>
19

fanruinet's avatar
fanruinet 已提交
20
## 2. Introduction to Global Parameters of Configuration File
K
Khanh Tran 已提交
21

W
WenmuZhou 已提交
22 23
Take rec_chinese_lite_train_v2.0.yml as an example
### Global
K
Khanh Tran 已提交
24

W
WenmuZhou 已提交
25
|         Parameter             |            Use                |      Defaults       |            Note            |
K
Khanh Tran 已提交
26
| :----------------------: |  :---------------------:   | :--------------:  |   :--------------------:   |
W
WenmuZhou 已提交
27 28
|      use_gpu             |    Set using GPU or not           |       true        |                \                 |
|      epoch_num           |    Maximum training epoch number             |       500        |                \                 |
W
WenmuZhou 已提交
29
|      log_smooth_window   |    Log queue length, the median value in the queue each time will be printed           |       20          |                \                 |
K
Khanh Tran 已提交
30
|      print_batch_step    |    Set print log interval         |       10          |                \                 |
W
WenmuZhou 已提交
31
|      save_model_dir      |    Set model save path        |  output/{算法名称}  |                \                 |
K
Khanh Tran 已提交
32
|      save_epoch_step     |    Set model save interval        |       3           |                \                 |
fanruinet's avatar
fanruinet 已提交
33
|      eval_batch_step     |    Set the model evaluation interval        | 2000 or [1000, 2000]        | running evaluation every 2000 iters or evaluation is run every 2000 iterations after the 1000th iteration   |
W
WenmuZhou 已提交
34 35 36 37 38
|      cal_metric_during_train     |    Set whether to evaluate the metric during the training process. At this time, the metric of the model under the current batch is evaluated        |       true         |                \                 |
|      load_static_weights     |   Set whether the pre-training model is saved in static graph mode (currently only required by the detection algorithm)        |       true         |                \                 |
|      pretrained_model    |    Set the path of the pre-trained model      |  ./pretrain_models/CRNN/best_accuracy  |  \          |
|      checkpoints         |    set model parameter path            |       None        |   Used to load parameters after interruption to continue training|
|      use_visualdl  |    Set whether to enable visualdl for visual log display |          False        |    [Tutorial](https://www.paddlepaddle.org.cn/paddle/visualdl) |
39
|      use_wandb     |    Set whether to enable W&B for visual log display      | False | [Documentation](https://docs.wandb.ai/)
qq_25193841's avatar
qq_25193841 已提交
40 41
|      infer_img            |    Set inference image path or folder path     |       ./infer_img | \||
|      character_dict_path |    Set dictionary path            |  ./ppocr/utils/ppocr_keys_v1.txt  | If the character_dict_path is None, model can only recognize number and lower letters |
W
WenmuZhou 已提交
42
|      max_text_length     |    Set the maximum length of text        |       25          |                \                 |
qq_25193841's avatar
qq_25193841 已提交
43
|      use_space_char     |    Set whether to recognize spaces             |        True      |          \|               |
W
WenmuZhou 已提交
44 45 46 47 48 49 50 51 52 53
|      label_list          |    Set the angle supported by the direction classifier       |    ['0','180']    |     Only valid in angle classifier model |
|      save_res_path          |    Set the save address of the test model results       |    ./output/det_db/predicts_db.txt    |     Only valid in the text detection model |

### Optimizer ([ppocr/optimizer](../../ppocr/optimizer))

|         Parameter             |            Use            |      Defaults        |            Note             |
| :---------------------: |  :---------------------:   | :--------------:  |   :--------------------:   |
|      name        |         Optimizer class name          |  Adam  |  Currently supports`Momentum`,`Adam`,`RMSProp`, see [ppocr/optimizer/optimizer.py](../../ppocr/optimizer/optimizer.py)  |
|      beta1           |    Set the exponential decay rate for the 1st moment estimates  |       0.9         |               \             |
|      beta2           |    Set the exponential decay rate for the 2nd moment estimates  |     0.999         |               \             |
Z
zhoujun 已提交
54
|      clip_norm           |    The maximum norm value  |    -         |               \             |
W
WenmuZhou 已提交
55 56 57 58 59 60 61 62 63
|      **lr**                |         Set the learning rate decay method       |   -    |       \  |
|        name    |      Learning rate decay class name   |         Cosine       | Currently supports`Linear`,`Cosine`,`Step`,`Piecewise`, see[ppocr/optimizer/learning_rate.py](../../ppocr/optimizer/learning_rate.py) |
|        learning_rate      |    Set the base learning rate        |       0.001      |  \        |
|      **regularizer**      |  Set network regularization method        |       -      | \        |
|        name      |    Regularizer class name      |       L2     |  Currently support`L1`,`L2`, see[ppocr/optimizer/regularizer.py](../../ppocr/optimizer/regularizer.py)        |
|        factor      |    Learning rate decay coefficient       |       0.00004     |  \        |


### Architecture ([ppocr/modeling](../../ppocr/modeling))
L
LDOUBLEV 已提交
64
In PaddleOCR, the network is divided into four stages: Transform, Backbone, Neck and Head
W
WenmuZhou 已提交
65 66 67 68

|         Parameter             |            Use            |      Defaults        |            Note             |
| :---------------------: |  :---------------------:   | :--------------:  |   :--------------------:   |
|      model_type        |         Network Type          |  rec  |  Currently support`rec`,`det`,`cls`  |
fanruinet's avatar
fanruinet 已提交
69
|      algorithm           |    Model name  |       CRNN         |               See [algorithm_overview](./algorithm_overview_en.md) for the support list             |
70
|      **Transform**           |    Set the transformation method  |       -       |               Currently only recognition algorithms are supported, see [ppocr/modeling/transform](../../ppocr/modeling/transforms) for details            |
W
WenmuZhou 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
|        name    |      Transformation class name   |         TPS       | Currently supports `TPS` |
|        num_fiducial      |   Number of TPS control points        |       20      |  Ten on the top and bottom       |
|        loc_lr      |    Localization network learning rate        |       0.1      |  \      |
|        model_name      |    Localization network size        |       small      |  Currently support`small`,`large`       |
|      **Backbone**      |  Set the network backbone class name        |       -      | see [ppocr/modeling/backbones](../../ppocr/modeling/backbones)        |
|        name      |    backbone class name       |       ResNet     | Currently support`MobileNetV3`,`ResNet`        |
|        layers      |    resnet layers       |       34     |  Currently support18,34,50,101,152,200       |
|        model_name      |    MobileNetV3 network size       |       small     |  Currently support`small`,`large`       |
|      **Neck**      |  Set network neck        |       -      | see[ppocr/modeling/necks](../../ppocr/modeling/necks)        |
|        name      |    neck class name       |       SequenceEncoder     | Currently support`SequenceEncoder`,`DBFPN`        |
|        encoder_type      |    SequenceEncoder encoder type       |       rnn     |  Currently support`reshape`,`fc`,`rnn`       |
|        hidden_size      |   rnn number of internal units       |       48     |  \      |
|        out_channels      |   Number of DBFPN output channels       |       256     |  \      |
|      **Head**      |  Set the network head        |       -      | see[ppocr/modeling/heads](../../ppocr/modeling/heads)        |
|        name      |    head class name       |       CTCHead     | Currently support`CTCHead`,`DBHead`,`ClsHead`        |
|        fc_decay      |    CTCHead regularization coefficient       |       0.0004     |  \      |
|        k      |   DBHead binarization coefficient       |       50     |  \      |
|        class_dim      |   ClsHead output category number       |       2     |  \      |


### Loss ([ppocr/losses](../../ppocr/losses))

|         Parameter             |            Use            |      Defaults        |            Note             |
| :---------------------: |  :---------------------:   | :--------------:  |   :--------------------:   |
|      name        |         loss class name          |  CTCLoss  |  Currently support`CTCLoss`,`DBLoss`,`ClsLoss`  |
|      balance_loss        |        Whether to balance the number of positive and negative samples in DBLossloss (using OHEM)         |  True  |  \  |
|      ohem_ratio        |        The negative and positive sample ratio of OHEM in DBLossloss         |  3  |  \  |
|      main_loss_type        |        The loss used by shrink_map in DBLossloss        |  DiceLoss  |  Currently support`DiceLoss`,`BCELoss`  |
|      alpha        |        The coefficient of shrink_map_loss in DBLossloss       |  5  |  \  |
|      beta        |        The coefficient of threshold_map_loss in DBLossloss       |  10  |  \  |
T
tink2123 已提交
101

W
WenmuZhou 已提交
102
### PostProcess ([ppocr/postprocess](../../ppocr/postprocess))
T
tink2123 已提交
103

W
WenmuZhou 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117
|         Parameter             |            Use            |      Defaults        |            Note             |
| :---------------------: |  :---------------------:   | :--------------:  |   :--------------------:   |
|      name        |         Post-processing class name          |  CTCLabelDecode  |  Currently support`CTCLoss`,`AttnLabelDecode`,`DBPostProcess`,`ClsPostProcess`  |
|      thresh        |        The threshold for binarization of the segmentation map in DBPostProcess         |  0.3  |  \  |
|      box_thresh        |        The threshold for filtering output boxes in DBPostProcess. Boxes below this threshold will not be output         |  0.7  |  \  |
|      max_candidates        |        The maximum number of text boxes output in DBPostProcess        |  1000  |   |
|      unclip_ratio        |        The unclip ratio of the text box in DBPostProcess       |  2.0  |  \  |

### Metric ([ppocr/metrics](../../ppocr/metrics))

|         Parameter             |            Use            |      Defaults        |            Note             |
| :---------------------: |  :---------------------:   | :--------------:  |   :--------------------:   |
|      name        |         Metric method name          |  CTCLabelDecode  |  Currently support`DetMetric`,`RecMetric`,`ClsMetric`  |
|      main_indicator        |        Main indicators, used to select the best model        |  acc |  For the detection method is hmean, the recognition and classification method is acc  |
T
tink2123 已提交
118

W
WenmuZhou 已提交
119 120
### Dataset  ([ppocr/data](../../ppocr/data))
|         Parameter             |            Use            |      Defaults        |            Note             |
T
tink2123 已提交
121
| :---------------------: |  :---------------------:   | :--------------:  |   :--------------------:   |
W
WenmuZhou 已提交
122
|      **dataset**        |         Return one sample per iteration          |  -  |  -  |
M
MissPenguin 已提交
123
|      name        |        dataset class name         |  SimpleDataSet |   Currently support`SimpleDataSet`,`LMDBDataSet`  |
W
WenmuZhou 已提交
124
|      data_dir        |        Image folder path        |  ./train_data |  \  |
M
MissPenguin 已提交
125
|      label_file_list        |        Groundtruth file path         |  ["./train_data/train_list.txt"] | This parameter is not required when dataset is LMDBDataSet   |
W
WenmuZhou 已提交
126 127 128 129 130 131
|      ratio_list        |        Ratio of data set         |  [1.0] | If there are two train_lists in label_file_list and ratio_list is [0.4,0.6], 40% will be sampled from train_list1, and 60% will be sampled from train_list2 to combine the entire dataset   |
|      transforms        |        List of methods to transform images and labels         |  [DecodeImage,CTCLabelEncode,RecResizeImg,KeepKeys] |   see[ppocr/data/imaug](../../ppocr/data/imaug)  |
|      **loader**        |        dataloader related         |  - |   |
|      shuffle        |        Does each epoch disrupt the order of the data set         |  True | \  |
|      batch_size_per_card        |        Single card batch size during training         |  256 | \  |
|      drop_last        |        Whether to discard the last incomplete mini-batch because the number of samples in the data set cannot be divisible by batch_size        |  True | \  |
W
WenmuZhou 已提交
132
|      num_workers        |        The number of sub-processes used to load data, if it is 0, the sub-process is not started, and the data is loaded in the main process       |  8 | \  |
T
tink2123 已提交
133

134 135 136 137 138 139 140 141 142 143 144
### Weights & Biases ([W&B](../../ppocr/utils/loggers/wandb_logger.py))
|         Parameter             |            Use            |      Defaults        |            Note             |
| :---------------------: |  :---------------------:   | :--------------:  |   :--------------------:   |
|          project              |     Project to which the run is to be logged | uncategorized | \
|          name                 |     Alias/Name of the run | Randomly generated by wandb | \ 
|          id                   |     ID of the run    | Randomly generated by wandb     | \
|          entity               | User or team to which the run is being logged         | The logged in user | \
|          save_dir             | local directory in which all the models and other data is saved | wandb | \
|          config               | model configuration | None | \


145
<a name="3-multilingual-config-file-generation"></a>
T
tink2123 已提交
146

147
## 3. Multilingual Config File Generation
T
tink2123 已提交
148

fanruinet's avatar
fanruinet 已提交
149
PaddleOCR currently supports recognition for 80 languages (besides Chinese). A multi-language configuration file template is
T
tink2123 已提交
150 151
provided under the path `configs/rec/multi_languages`: [rec_multi_language_lite_train.yml](../../configs/rec/multi_language/rec_multi_language_lite_train.yml)

fanruinet's avatar
fanruinet 已提交
152
There are two ways to create the required configuration file:
T
tink2123 已提交
153

L
LDOUBLEV 已提交
154
1. Automatically generated by script
T
tink2123 已提交
155

fanruinet's avatar
fanruinet 已提交
156
Script [generate_multi_language_configs.py](../../configs/rec/multi_language/generate_multi_language_configs.py) can help you generate configuration files for multi-language models.
T
tink2123 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200

- Take Italian as an example, if your data is prepared in the following format:
    ```
    |-train_data
        |- it_train.txt # train_set label
        |- it_val.txt # val_set label
        |- data
            |- word_001.jpg
            |- word_002.jpg
            |- word_003.jpg
            | ...
    ```

    You can use the default parameters to generate a configuration file:

    ```bash
    # The code needs to be run in the specified directory
    cd PaddleOCR/configs/rec/multi_language/
    # Set the configuration file of the language to be generated through the -l or --language parameter.
    # This command will write the default parameters into the configuration file
    python3 generate_multi_language_configs.py -l it
    ```

- If your data is placed in another location, or you want to use your own dictionary, you can generate the configuration file by specifying the relevant parameters:

    ```bash
    # -l or --language field is required
    # --train to modify the training set
    # --val to modify the validation set
    # --data_dir to modify the data set directory
    # --dict to modify the dict path
    # -o to modify the corresponding default parameters
    cd PaddleOCR/configs/rec/multi_language/
    python3 generate_multi_language_configs.py -l it \  # language
    --train {path/of/train_label.txt} \ # path of train_label
    --val {path/of/val_label.txt} \     # path of val_label
    --data_dir {train_data/path} \      # root directory of training data
    --dict {path/of/dict} \             # path of dict
    -o Global.use_gpu=False             # whether to use gpu
    ...

    ```
Italian is made up of Latin letters, so after executing the command, you will get the rec_latin_lite_train.yml.

L
LDOUBLEV 已提交
201
2. Manually modify the configuration file
T
tink2123 已提交
202 203 204 205 206 207 208 209 210

   You can also manually modify the following fields in the template:

   ```
    Global:
      use_gpu: True
      epoch_num: 500
      ...
      character_dict_path:  {path/of/dict} # path of dict
fanruinet's avatar
fanruinet 已提交
211

T
tink2123 已提交
212 213 214 215 216 217
   Train:
      dataset:
        name: SimpleDataSet
        data_dir: train_data/ # root directory of training data
        label_file_list: ["./train_data/train_list.txt"] # train label path
      ...
fanruinet's avatar
fanruinet 已提交
218

T
tink2123 已提交
219 220 221 222 223 224
   Eval:
      dataset:
        name: SimpleDataSet
        data_dir: train_data/ # root directory of val data
        label_file_list: ["./train_data/val_list.txt"] # val label path
      ...
fanruinet's avatar
fanruinet 已提交
225

T
tink2123 已提交
226
   ```
L
LDOUBLEV 已提交
227

X
xiaoting 已提交
228

L
LDOUBLEV 已提交
229 230
Currently, the multi-language algorithms supported by PaddleOCR are:

qq_25193841's avatar
qq_25193841 已提交
231 232 233 234 235 236 237 238 239 240 241 242
| Configuration file |  Algorithm name |   backbone |   trans   |   seq      |     pred     |  language |
| :--------: |  :-------:   | :-------:  |   :-------:   |   :-----:   |  :-----:   | :-----:  |
| rec_chinese_cht_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | chinese traditional  |
| rec_en_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | English(Case sensitive)   |
| rec_french_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | French |
| rec_ger_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | German   |
| rec_japan_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | Japanese |
| rec_korean_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | Korean  |
| rec_latin_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | Latin  |
| rec_arabic_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | arabic |
| rec_cyrillic_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | cyrillic   |
| rec_devanagari_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | devanagari  |
L
LDOUBLEV 已提交
243 244 245 246 247

For more supported languages, please refer to : [Multi-language model](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.1/doc/doc_en/multi_languages_en.md#4-support-languages-and-abbreviations)

The multi-language model training method is the same as the Chinese model. The training data set is 100w synthetic data. A small amount of fonts and test data can be downloaded using the following two methods.
* [Baidu Netdisk](https://pan.baidu.com/s/1bS_u207Rm7YbY33wOECKDA),Extraction code:frgi.
248
* [Google drive](https://drive.google.com/file/d/18cSWX7wXSy4G0tbKJ0d9PuIaiwRLHpjA/view)