rec_mtb_nrtr.yml 2.6 KB
Newer Older
T
Topdu 已提交
1 2 3 4 5
Global:
  use_gpu: True
  epoch_num: 21
  log_smooth_window: 20
  print_batch_step: 10
T
Topdu 已提交
6
<<<<<<< HEAD
T
Topdu 已提交
7 8 9 10 11
  save_model_dir: ./output/rec/nrtr_final/
  save_epoch_step: 1
  # evaluation is run every 2000 iterations
  eval_batch_step: [0, 2000]
  cal_metric_during_train: True
T
Topdu 已提交
12 13 14 15 16 17 18
=======
  save_model_dir: ./output/rec/piloptimnrtr/
  save_epoch_step: 1
  # evaluation is run every 2000 iterations
  eval_batch_step: [0, 2000]
  cal_metric_during_train: False
>>>>>>> 9c67a7f... add rec_nrtr
T
Topdu 已提交
19 20 21 22 23 24
  pretrained_model:
  checkpoints: 
  save_inference_dir:
  use_visualdl: False
  infer_img: doc/imgs_words_en/word_10.png
  # for data or label process
T
Topdu 已提交
25
<<<<<<< HEAD
T
Topdu 已提交
26 27 28 29 30
  character_dict_path: 
  character_type: EN_symbol
  max_text_length: 25
  infer_mode: False
  use_space_char: True
T
Topdu 已提交
31 32 33 34 35 36 37
=======
  character_dict_path: ppocr/utils/dict_99.txt
  character_type: dict_99
  max_text_length: 25
  infer_mode: False
  use_space_char: False
>>>>>>> 9c67a7f... add rec_nrtr
T
Topdu 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
  save_res_path: ./output/rec/predicts_nrtr.txt

Optimizer:
  name: Adam
  beta1: 0.9
  beta2: 0.99
  clip_norm: 5.0
  lr:
    name: Cosine
    learning_rate: 0.0005
    warmup_epoch: 2
  regularizer:
    name: 'L2'
    factor: 0.

Architecture:
  model_type: rec
  algorithm: NRTR
  in_channels: 1
  Transform:
  Backbone:
    name: MTB
    cnn_num: 2
  Head:
    name: TransformerOptim
    d_model: 512
    num_encoder_layers: 6
    beam_size: -1    # When Beam size is greater than 0, it means to use beam search when evaluation.
    

Loss:
  name: NRTRLoss
  smoothing: True

PostProcess:
  name: NRTRLabelDecode

Metric:
  name: RecMetric
  main_indicator: acc

Train:
  dataset:
    name: LMDBDataSet
    data_dir: /paddle/data/ocr_data/training/
    transforms:
      - NRTRDecodeImage: # load image
          img_mode: BGR
          channel_first: False
      - NRTRLabelEncode: # Class handling label
      - PILResize:
          image_shape: [100, 32]
      - KeepKeys:
          keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
  loader:
    shuffle: True
    batch_size_per_card: 512
    drop_last: True
    num_workers: 8

Eval:
  dataset:
    name: LMDBDataSet
    data_dir: /paddle/data/ocr_data/evaluation/
    transforms:
      - NRTRDecodeImage: # load image
          img_mode: BGR
          channel_first: False
      - NRTRLabelEncode: # Class handling label
      - PILResize:
          image_shape: [100, 32]
      - KeepKeys:
          keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
  loader:
    shuffle: False
    drop_last: False
    batch_size_per_card: 256
    num_workers: 1
    use_shared_memory: False