ocr_db_crnn.cc 10.0 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <iostream>
#include <vector>
#include <chrono>
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include "paddle_api.h"  // NOLINT

#include "utils/db_post_process.cpp"
#include "utils/crnn_process.cpp"
#include <cstring>
#include <fstream>

using namespace paddle::lite_api;  // NOLINT

struct Object {
  cv::Rect rec;
  int class_id;
  float prob;
};

int64_t ShapeProduction(const shape_t& shape) {
  int64_t res = 1;
  for (auto i : shape) res *= i;
  return res;
}

// fill tensor with mean and scale and trans layout: nhwc -> nchw, neon speed up
void neon_mean_scale(const float* din,
                     float* dout,
                     int size,
                     const std::vector<float> mean,
                     const std::vector<float> scale) {
  if (mean.size() != 3 || scale.size() != 3) {
    std::cerr << "[ERROR] mean or scale size must equal to 3\n";
    exit(1);
  }
  float32x4_t vmean0 = vdupq_n_f32(mean[0]);
  float32x4_t vmean1 = vdupq_n_f32(mean[1]);
  float32x4_t vmean2 = vdupq_n_f32(mean[2]);
  float32x4_t vscale0 = vdupq_n_f32(scale[0]);
  float32x4_t vscale1 = vdupq_n_f32(scale[1]);
  float32x4_t vscale2 = vdupq_n_f32(scale[2]);

  float* dout_c0 = dout;
  float* dout_c1 = dout + size;
  float* dout_c2 = dout + size * 2;

  int i = 0;
  for (; i < size - 3; i += 4) {
    float32x4x3_t vin3 = vld3q_f32(din);
    float32x4_t vsub0 = vsubq_f32(vin3.val[0], vmean0);
    float32x4_t vsub1 = vsubq_f32(vin3.val[1], vmean1);
    float32x4_t vsub2 = vsubq_f32(vin3.val[2], vmean2);
    float32x4_t vs0 = vmulq_f32(vsub0, vscale0);
    float32x4_t vs1 = vmulq_f32(vsub1, vscale1);
    float32x4_t vs2 = vmulq_f32(vsub2, vscale2);
    vst1q_f32(dout_c0, vs0);
    vst1q_f32(dout_c1, vs1);
    vst1q_f32(dout_c2, vs2);

    din += 12;
    dout_c0 += 4;
    dout_c1 += 4;
    dout_c2 += 4;
  }
  for (; i < size; i++) {
    *(dout_c0++) = (*(din++) - mean[0]) * scale[0];
    *(dout_c1++) = (*(din++) - mean[1]) * scale[1];
    *(dout_c2++) = (*(din++) - mean[2]) * scale[2];
  }
}

// resize image to a size multiple of 32 which is required by the network
cv::Mat resize_img_type0(const cv::Mat img, int max_size_len, float *ratio_h, float *ratio_w){
  int w = img.cols;
  int h = img.rows;

  float ratio = 1.f;
  int max_wh = w >=h ? w : h;
  if (max_wh > max_size_len){
    if (h > w){
      ratio = float(max_size_len) / float(h);
    } else {
      ratio = float(max_size_len) / float(w);
    }
  }

  int resize_h = int(float(h) * ratio);
  int resize_w = int(float(w) * ratio);
  if (resize_h % 32 == 0)
    resize_h = resize_h;
  else if (resize_h / 32 < 1)
    resize_h = 32;
  else
    resize_h = (resize_h / 32 - 1) * 32;

  if (resize_w % 32 == 0)
    resize_w = resize_w;
  else if (resize_w /32 < 1)
    resize_w = 32;
  else
    resize_w = (resize_w/32 - 1)*32;

  cv::Mat resize_img;
  cv::resize(img, resize_img, cv::Size(resize_w, resize_h));

  *ratio_h = float(resize_h) / float(h);
  *ratio_w = float(resize_w) / float(w);
  return resize_img;
}

using namespace std;

void RunRecModel(std::vector<std::vector<std::vector<int>>> boxes, cv::Mat img, std::string rec_model_file){

  MobileConfig config;
  config.set_model_from_file(rec_model_file);

  std::shared_ptr<PaddlePredictor> predictor_crnn =
        CreatePaddlePredictor<MobileConfig>(config);

  std::vector<float> mean = {0.5f, 0.5f, 0.5f};
  std::vector<float> scale = {1 / 0.5f, 1 / 0.5f, 1 / 0.5f};

  cv::Mat srcimg;
  img.copyTo(srcimg);
  cv::Mat crop_img;
  cv::Mat resize_img;

  std::string dict_path = "./ppocr_keys_v1.txt";
  auto charactor_dict = read_dict(dict_path);

  std::cout << "The predicted text is :" << std::endl;
  int index = 0;
  for (int i=boxes.size()-1; i >= 0; i--) {
    crop_img = get_rotate_crop_image(srcimg, boxes[i]);

    float wh_ratio = float(crop_img.cols) / float(crop_img.rows);

    resize_img = crnn_resize_img(crop_img, wh_ratio);
    resize_img.convertTo(resize_img, CV_32FC3, 1 / 255.f);

    const float *dimg = reinterpret_cast<const float *>(resize_img.data);

    std::unique_ptr <Tensor> input_tensor0(std::move(predictor_crnn->GetInput(0)));
    input_tensor0->Resize({1, 3, resize_img.rows, resize_img.cols});
    auto *data0 = input_tensor0->mutable_data<float>();

    neon_mean_scale(dimg, data0, resize_img.rows * resize_img.cols, mean, scale);

    //// Run CRNN predictor
    predictor_crnn->Run();

    // Get output and run postprocess
    std::unique_ptr<const Tensor> output_tensor0(
            std::move(predictor_crnn->GetOutput(0)));
    auto *rec_idx = output_tensor0->data<int>();

    auto rec_idx_lod = output_tensor0->lod();
    auto shape_out = output_tensor0->shape();

    std::vector<int> pred_idx;
    for (int n = int(rec_idx_lod[0][0]); n < int(rec_idx_lod[0][1] * 2); n += 2) {
      pred_idx.push_back(int(rec_idx[n]));
    }

    if (pred_idx.size() < 1e-3)
      continue;
    std::cout << std::endl;

    index += 1;
    std::cout << index << "\t";
    for (int n = 0; n < pred_idx.size(); n++) {
      std::cout << charactor_dict[pred_idx[n]];
    }

    ////get score
    std::unique_ptr<const Tensor> output_tensor1(std::move(predictor_crnn->GetOutput(1)));
    auto *predict_batch = output_tensor1->data<float>();
    auto predict_shape = output_tensor1->shape();

    auto predict_lod = output_tensor1->lod();

    int argmax_idx;
    int blank = predict_shape[1];
    float score = 0.f;
    int count = 0;
    float max_value = 0.0f;

    for (int n = predict_lod[0][0]; n < predict_lod[0][1] - 1; n++) {
      argmax_idx = int(argmax(&predict_batch[n * predict_shape[1]], &predict_batch[(n + 1) * predict_shape[1]]));
      max_value = float(
              *std::max_element(&predict_batch[n * predict_shape[1]], &predict_batch[(n + 1) * predict_shape[1]]));

      if (blank - 1 - argmax_idx > 1e-5) {
        score += max_value;
        count += 1;
      }

    }
    score /= count;
    std::cout << "\tscore: " << score << std::endl;
  }
}

std::vector<std::vector<std::vector<int>>> RunDetModel(std::string model_file, cv::Mat img) {
  // Set MobileConfig
  MobileConfig config;
  config.set_model_from_file(model_file);

  std::shared_ptr<PaddlePredictor> predictor =
      CreatePaddlePredictor<MobileConfig>(config);

  // Read img
  int max_side_len = 960;
  float ratio_h{};
  float ratio_w{};

  cv::Mat srcimg;
  img.copyTo(srcimg);

  img = resize_img_type0(img, max_side_len, &ratio_h, &ratio_w);
  cv::Mat img_fp;
  img.convertTo(img_fp, CV_32FC3, 1.0 / 255.f);

  // Prepare input data from image
  std::unique_ptr<Tensor> input_tensor0(std::move(predictor->GetInput(0)));
  input_tensor0->Resize({1, 3, img_fp.rows, img_fp.cols});
  auto* data0 = input_tensor0->mutable_data<float>();

  std::vector<float> mean = {0.485f, 0.456f, 0.406f};
  std::vector<float> scale = {1/0.229f, 1/0.224f, 1/0.225f};
  const float* dimg = reinterpret_cast<const float*>(img_fp.data);
  neon_mean_scale(dimg, data0, img_fp.rows * img_fp.cols, mean, scale);

  // Run predictor
  predictor->Run();

  // Get output and post process
  std::unique_ptr<const Tensor> output_tensor(std::move(predictor->GetOutput(0)));
  auto* outptr = output_tensor->data<float>();
  auto shape_out = output_tensor->shape();

  int64_t out_numl = 1;
  double sum = 0;
  for (auto i : shape_out) {
    out_numl *= i;
  }

  // Save output
  float pred[shape_out[2]][shape_out[3]];
  unsigned char cbuf[shape_out[2]][shape_out[3]];

  for (int i=0; i< int(shape_out[2]*shape_out[3]); i++){
    pred[int(i/int(shape_out[3]))][int(i%shape_out[3])] = float(outptr[i]);
    cbuf[int(i/int(shape_out[3]))][int(i%shape_out[3])] = (unsigned char) ((outptr[i])*255);
  }

  cv::Mat cbuf_map(shape_out[2], shape_out[3], CV_8UC1, (unsigned char*)cbuf);
  cv::Mat pred_map(shape_out[2], shape_out[3], CV_32F, (float *)pred);

  const double threshold = 0.3*255;
  const double maxvalue = 255;
  cv::Mat bit_map;
  cv::threshold(cbuf_map, bit_map, threshold, maxvalue, cv::THRESH_BINARY);

  auto boxes = boxes_from_bitmap(pred_map, bit_map);

  std::vector<std::vector<std::vector<int>>> filter_boxes = filter_tag_det_res(boxes, ratio_h, ratio_w, srcimg);

  //// visualization
  cv::Point rook_points[filter_boxes.size()][4];
  for (int n=0; n<filter_boxes.size(); n++){
    for (int m=0; m< filter_boxes[0].size(); m++){
      rook_points[n][m] = cv::Point(int(filter_boxes[n][m][0]), int(filter_boxes[n][m][1]));
    }
  }

  cv::Mat img_vis;
  srcimg.copyTo(img_vis);
  for (int n=0; n<boxes.size(); n++){
    const cv::Point* ppt[1] = { rook_points[n] };
    int npt[] = { 4 };
    cv::polylines(img_vis, ppt, npt,1,1,CV_RGB(0,255,0),2,8,0);
  }

  cv::imwrite("./imgs_vis/vis.jpg", img_vis);
  std::cout << "The detection visualized image saved in ./imgs_vis/" <<std::endl;

  return filter_boxes;
}


int main(int argc, char** argv) {
  if (argc < 4) {
    std::cerr << "[ERROR] usage: " << argv[0] << " det_model_file rec_model_file image_path\n";
    exit(1);
  }
  std::string det_model_file = argv[1];
  std::string rec_model_file = argv[2];
  std::string img_path = argv[3];

  auto start = std::chrono::system_clock::now();

  cv::Mat srcimg = cv::imread(img_path, cv::IMREAD_COLOR);
  auto boxes = RunDetModel(det_model_file, srcimg);

  RunRecModel(boxes, srcimg, rec_model_file);

  auto end   = std::chrono::system_clock::now();
  auto duration = std::chrono::duration_cast<std::chrono::microseconds>(end - start);
  std::cout <<  "花费了"
            << double(duration.count()) * std::chrono::microseconds::period::num /std::chrono::microseconds::period::den
            << "秒" << std::endl;

  return 0;
}