ski_thin.py 5.7 KB
Newer Older
J
Jethong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
J
Jethong 已提交
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136

import numpy as np
from scipy import ndimage as ndi

G123_LUT = np.array(
    [
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0,
        0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0,
        1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0,
        1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0
    ],
    dtype=np.bool)

G123P_LUT = np.array(
    [
        0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1,
        0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1,
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
    ],
    dtype=np.bool)


def thin(image, max_iter=None):
    """
    Perform morphological thinning of a binary image.
    Parameters
    ----------
    image : binary (M, N) ndarray
        The image to be thinned.
    max_iter : int, number of iterations, optional
        Regardless of the value of this parameter, the thinned image
        is returned immediately if an iteration produces no change.
        If this parameter is specified it thus sets an upper bound on
        the number of iterations performed.
    Returns
    -------
    out : ndarray of bool
        Thinned image.
    See also
    --------
    skeletonize, medial_axis
    Notes
    -----
    This algorithm [1]_ works by making multiple passes over the image,
    removing pixels matching a set of criteria designed to thin
    connected regions while preserving eight-connected components and
    2 x 2 squares [2]_. In each of the two sub-iterations the algorithm
    correlates the intermediate skeleton image with a neighborhood mask,
    then looks up each neighborhood in a lookup table indicating whether
    the central pixel should be deleted in that sub-iteration.
    References
    ----------
    .. [1] Z. Guo and R. W. Hall, "Parallel thinning with
           two-subiteration algorithms," Comm. ACM, vol. 32, no. 3,
           pp. 359-373, 1989. :DOI:`10.1145/62065.62074`
    .. [2] Lam, L., Seong-Whan Lee, and Ching Y. Suen, "Thinning
           Methodologies-A Comprehensive Survey," IEEE Transactions on
           Pattern Analysis and Machine Intelligence, Vol 14, No. 9,
           p. 879, 1992. :DOI:`10.1109/34.161346`
    Examples
    --------
    >>> square = np.zeros((7, 7), dtype=np.uint8)
    >>> square[1:-1, 2:-2] = 1
    >>> square[0, 1] =  1
    >>> square
    array([[0, 1, 0, 0, 0, 0, 0],
           [0, 0, 1, 1, 1, 0, 0],
           [0, 0, 1, 1, 1, 0, 0],
           [0, 0, 1, 1, 1, 0, 0],
           [0, 0, 1, 1, 1, 0, 0],
           [0, 0, 1, 1, 1, 0, 0],
           [0, 0, 0, 0, 0, 0, 0]], dtype=uint8)
    >>> skel = thin(square)
    >>> skel.astype(np.uint8)
    array([[0, 1, 0, 0, 0, 0, 0],
           [0, 0, 1, 0, 0, 0, 0],
           [0, 0, 0, 1, 0, 0, 0],
           [0, 0, 0, 1, 0, 0, 0],
           [0, 0, 0, 1, 0, 0, 0],
           [0, 0, 0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0, 0, 0]], dtype=uint8)
    """
    # convert image to uint8 with values in {0, 1}
    skel = np.asanyarray(image, dtype=bool).astype(np.uint8)

    # neighborhood mask
    mask = np.array([[8, 4, 2], [16, 0, 1], [32, 64, 128]], dtype=np.uint8)

    # iterate until convergence, up to the iteration limit
    max_iter = max_iter or np.inf
    n_iter = 0
    n_pts_old, n_pts_new = np.inf, np.sum(skel)
    while n_pts_old != n_pts_new and n_iter < max_iter:
        n_pts_old = n_pts_new

        # perform the two "subiterations" described in the paper
        for lut in [G123_LUT, G123P_LUT]:
            # correlate image with neighborhood mask
            N = ndi.correlate(skel, mask, mode='constant')
            # take deletion decision from this subiteration's LUT
            D = np.take(lut, N)
            # perform deletion
            skel[D] = 0

        n_pts_new = np.sum(skel)  # count points after thinning
        n_iter += 1

    return skel.astype(np.bool)