run_det.sh 1.7 KB
Newer Older
L
LDOUBLEV 已提交
1
# 提供可稳定复现性能的脚本,默认在标准docker环境内py37执行: paddlepaddle/paddle:latest-gpu-cuda10.1-cudnn7  paddle=2.1.2  py=37
L
LDOUBLEV 已提交
2
# 执行目录: ./PaddleOCR
L
LDOUBLEV 已提交
3
# 1 安装该模型需要的依赖 (如需开启优化策略请注明)
L
LDOUBLEV 已提交
4
python3.7 -m pip install -r requirements.txt
L
LDOUBLEV 已提交
5
# 2 拷贝该模型需要数据、预训练模型
文幕地方's avatar
文幕地方 已提交
6 7
wget -P ./train_data/  https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015.tar && cd train_data  && tar xf icdar2015.tar && cd ../
wget -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_pretrained.pdparams
L
LDOUBLEV 已提交
8
wget -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet18_vd_pretrained.pdparams
Z
zhoujun 已提交
9
wget -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_ssld_pretrained.pdparams
L
LDOUBLEV 已提交
10 11
# 3 批量运行(如不方便批量,1,2需放到单个模型中)

文幕地方's avatar
文幕地方 已提交
12
model_mode_list=(det_res18_db_v2.0 det_r50_vd_east det_r50_vd_pse)
L
LDOUBLEV 已提交
13
fp_item_list=(fp32)
L
LDOUBLEV 已提交
14
bs_list=(8 16)
L
LDOUBLEV 已提交
15 16 17 18 19
for model_mode in ${model_mode_list[@]}; do
      for fp_item in ${fp_item_list[@]}; do
          for bs_item in ${bs_list[@]}; do
            echo "index is speed, 1gpus, begin, ${model_name}"
            run_mode=sp
文幕地方's avatar
文幕地方 已提交
20
            CUDA_VISIBLE_DEVICES=0 bash benchmark/run_benchmark_det.sh ${run_mode} ${bs_item} ${fp_item} 2 ${model_mode}     #  (5min)
L
LDOUBLEV 已提交
21 22
            sleep 60
            echo "index is speed, 8gpus, run_mode is multi_process, begin, ${model_name}"
L
LDOUBLEV 已提交
23
            run_mode=mp
文幕地方's avatar
文幕地方 已提交
24
            CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 bash benchmark/run_benchmark_det.sh ${run_mode} ${bs_item} ${fp_item} 2 ${model_mode} 
L
LDOUBLEV 已提交
25
            sleep 60
L
LDOUBLEV 已提交
26 27 28 29 30
            done
      done
done