__init__.py 1.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
W
WenmuZhou 已提交
14

D
dyning 已提交
15
import copy
littletomatodonkey's avatar
littletomatodonkey 已提交
16 17
import importlib

18 19 20
from paddle.jit import to_static
from paddle.static import InputSpec

littletomatodonkey's avatar
littletomatodonkey 已提交
21 22
from .base_model import BaseModel
from .distillation_model import DistillationModel
D
dyning 已提交
23

24
__all__ = ["build_model", "apply_to_static"]
D
dyning 已提交
25

littletomatodonkey's avatar
littletomatodonkey 已提交
26

D
dyning 已提交
27 28
def build_model(config):
    config = copy.deepcopy(config)
littletomatodonkey's avatar
littletomatodonkey 已提交
29 30 31 32 33 34 35
    if not "name" in config:
        arch = BaseModel(config)
    else:
        name = config.pop("name")
        mod = importlib.import_module(__name__)
        arch = getattr(mod, name)(config)
    return arch
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50


def apply_to_static(model, config, logger):
    if config["Global"].get("to_static", False) is not True:
        return model
    assert "image_shape" in config[
        "Global"], "image_shape must be assigned for static training mode..."
    supported_list = ["DB"]
    assert config["Architecture"][
        "algorithm"] in supported_list, f"algorithms that supports static training must in in {supported_list} but got {config['Architecture']['algorithm']}"

    specs = [InputSpec([None] + config["Global"]["image_shape"])]
    model = to_static(model, input_spec=specs)
    logger.info("Successfully to apply @to_static with specs: {}".format(specs))
    return model