predict_system.py 9.5 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15
import os
import sys
W
WenmuZhou 已提交
16

17
__dir__ = os.path.dirname(os.path.abspath(__file__))
18
sys.path.append(__dir__)
19
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
L
LDOUBLEV 已提交
20

L
LDOUBLEV 已提交
21 22
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'

L
LDOUBLEV 已提交
23 24 25 26
import cv2
import copy
import numpy as np
import time
L
LDOUBLEV 已提交
27
from PIL import Image
W
WenmuZhou 已提交
28 29 30
import tools.infer.utility as utility
import tools.infer.predict_rec as predict_rec
import tools.infer.predict_det as predict_det
W
WenmuZhou 已提交
31
import tools.infer.predict_cls as predict_cls
W
WenmuZhou 已提交
32 33
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
from ppocr.utils.logging import get_logger
L
LDOUBLEV 已提交
34 35
from tools.infer.utility import draw_ocr_box_txt, get_current_memory_mb
import tools.infer.benchmark_utils as benchmark_utils
W
WenmuZhou 已提交
36 37
logger = get_logger()

L
LDOUBLEV 已提交
38 39 40 41 42

class TextSystem(object):
    def __init__(self, args):
        self.text_detector = predict_det.TextDetector(args)
        self.text_recognizer = predict_rec.TextRecognizer(args)
W
WenmuZhou 已提交
43
        self.use_angle_cls = args.use_angle_cls
W
WenmuZhou 已提交
44
        self.drop_score = args.drop_score
W
WenmuZhou 已提交
45 46
        if self.use_angle_cls:
            self.text_classifier = predict_cls.TextClassifier(args)
L
LDOUBLEV 已提交
47 48

    def get_rotate_crop_image(self, img, points):
49
        '''
L
LDOUBLEV 已提交
50 51 52 53 54 55 56 57
        img_height, img_width = img.shape[0:2]
        left = int(np.min(points[:, 0]))
        right = int(np.max(points[:, 0]))
        top = int(np.min(points[:, 1]))
        bottom = int(np.max(points[:, 1]))
        img_crop = img[top:bottom, left:right, :].copy()
        points[:, 0] = points[:, 0] - left
        points[:, 1] = points[:, 1] - top
58
        '''
L
LDOUBLEV 已提交
59 60 61 62 63 64 65 66 67
        img_crop_width = int(
            max(
                np.linalg.norm(points[0] - points[1]),
                np.linalg.norm(points[2] - points[3])))
        img_crop_height = int(
            max(
                np.linalg.norm(points[0] - points[3]),
                np.linalg.norm(points[1] - points[2])))
        pts_std = np.float32([[0, 0], [img_crop_width, 0],
68 69
                              [img_crop_width, img_crop_height],
                              [0, img_crop_height]])
L
LDOUBLEV 已提交
70
        M = cv2.getPerspectiveTransform(points, pts_std)
L
LDOUBLEV 已提交
71 72 73 74 75
        dst_img = cv2.warpPerspective(
            img,
            M, (img_crop_width, img_crop_height),
            borderMode=cv2.BORDER_REPLICATE,
            flags=cv2.INTER_CUBIC)
L
LDOUBLEV 已提交
76 77 78 79 80 81 82 83 84
        dst_img_height, dst_img_width = dst_img.shape[0:2]
        if dst_img_height * 1.0 / dst_img_width >= 1.5:
            dst_img = np.rot90(dst_img)
        return dst_img

    def print_draw_crop_rec_res(self, img_crop_list, rec_res):
        bbox_num = len(img_crop_list)
        for bno in range(bbox_num):
            cv2.imwrite("./output/img_crop_%d.jpg" % bno, img_crop_list[bno])
W
WenmuZhou 已提交
85
            logger.info(bno, rec_res[bno])
L
LDOUBLEV 已提交
86

87
    def __call__(self, img, cls=True):
L
LDOUBLEV 已提交
88 89
        ori_im = img.copy()
        dt_boxes, elapse = self.text_detector(img)
L
LDOUBLEV 已提交
90

W
WenmuZhou 已提交
91
        logger.debug("dt_boxes num : {}, elapse : {}".format(
W
WenmuZhou 已提交
92
            len(dt_boxes), elapse))
L
LDOUBLEV 已提交
93 94 95
        if dt_boxes is None:
            return None, None
        img_crop_list = []
96 97 98

        dt_boxes = sorted_boxes(dt_boxes)

L
LDOUBLEV 已提交
99 100 101 102
        for bno in range(len(dt_boxes)):
            tmp_box = copy.deepcopy(dt_boxes[bno])
            img_crop = self.get_rotate_crop_image(ori_im, tmp_box)
            img_crop_list.append(img_crop)
103
        if self.use_angle_cls and cls:
W
WenmuZhou 已提交
104 105
            img_crop_list, angle_list, elapse = self.text_classifier(
                img_crop_list)
W
WenmuZhou 已提交
106
            logger.debug("cls num  : {}, elapse : {}".format(
W
WenmuZhou 已提交
107 108
                len(img_crop_list), elapse))

L
LDOUBLEV 已提交
109
        rec_res, elapse = self.text_recognizer(img_crop_list)
W
WenmuZhou 已提交
110
        logger.debug("rec_res num  : {}, elapse : {}".format(
W
WenmuZhou 已提交
111
            len(rec_res), elapse))
112
        # self.print_draw_crop_rec_res(img_crop_list, rec_res)
W
WenmuZhou 已提交
113 114 115 116 117 118 119
        filter_boxes, filter_rec_res = [], []
        for box, rec_reuslt in zip(dt_boxes, rec_res):
            text, score = rec_reuslt
            if score >= self.drop_score:
                filter_boxes.append(box)
                filter_rec_res.append(rec_reuslt)
        return filter_boxes, filter_rec_res
L
LDOUBLEV 已提交
120 121


122 123 124 125
def sorted_boxes(dt_boxes):
    """
    Sort text boxes in order from top to bottom, left to right
    args:
T
tink2123 已提交
126
        dt_boxes(array):detected text boxes with shape [4, 2]
127 128 129 130
    return:
        sorted boxes(array) with shape [4, 2]
    """
    num_boxes = dt_boxes.shape[0]
131
    sorted_boxes = sorted(dt_boxes, key=lambda x: (x[0][1], x[0][0]))
132 133 134
    _boxes = list(sorted_boxes)

    for i in range(num_boxes - 1):
W
WenmuZhou 已提交
135 136
        if abs(_boxes[i + 1][0][1] - _boxes[i][0][1]) < 10 and \
                (_boxes[i + 1][0][0] < _boxes[i][0][0]):
137 138 139 140 141 142
            tmp = _boxes[i]
            _boxes[i] = _boxes[i + 1]
            _boxes[i + 1] = tmp
    return _boxes


143
def main(args):
L
LDOUBLEV 已提交
144
    image_file_list = get_image_file_list(args.image_dir)
L
LDOUBLEV 已提交
145
    text_sys = TextSystem(args)
L
LDOUBLEV 已提交
146
    is_visualize = True
W
WenmuZhou 已提交
147
    font_path = args.vis_font_path
W
WenmuZhou 已提交
148
    drop_score = args.drop_score
D
Double_V 已提交
149

L
LDOUBLEV 已提交
150 151 152 153 154
    # warm up 10 times
    if args.warmup:
        img = np.random.uniform(0, 255, [640, 640, 3]).astype(np.uint8)
        for i in range(10):
            res = text_sys(img)
D
Double_V 已提交
155
            
L
LDOUBLEV 已提交
156 157 158 159 160
    total_time = 0
    cpu_mem, gpu_mem, gpu_util = 0, 0, 0
    _st = time.time()
    count = 0
    for idx, image_file in enumerate(image_file_list):
L
LDOUBLEV 已提交
161

L
LDOUBLEV 已提交
162 163 164
        img, flag = check_and_read_gif(image_file)
        if not flag:
            img = cv2.imread(image_file)
L
LDOUBLEV 已提交
165
        if img is None:
W
WenmuZhou 已提交
166
            logger.error("error in loading image:{}".format(image_file))
L
LDOUBLEV 已提交
167 168 169 170
            continue
        starttime = time.time()
        dt_boxes, rec_res = text_sys(img)
        elapse = time.time() - starttime
L
LDOUBLEV 已提交
171 172 173 174 175 176 177
        total_time += elapse
        if args.benchmark and idx % 20 == 0:
            cm, gm, gu = get_current_memory_mb(0)
            cpu_mem += cm
            gpu_mem += gm
            gpu_util += gu
            count += 1
L
LDOUBLEV 已提交
178

L
LDOUBLEV 已提交
179 180
        logger.info(
            str(idx) + "  Predict time of %s: %.3fs" % (image_file, elapse))
W
WenmuZhou 已提交
181 182
        for text, score in rec_res:
            logger.info("{}, {:.3f}".format(text, score))
L
LDOUBLEV 已提交
183 184 185 186 187 188 189

        if is_visualize:
            image = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
            boxes = dt_boxes
            txts = [rec_res[i][0] for i in range(len(rec_res))]
            scores = [rec_res[i][1] for i in range(len(rec_res))]

W
WenmuZhou 已提交
190 191 192 193 194 195 196
            draw_img = draw_ocr_box_txt(
                image,
                boxes,
                txts,
                scores,
                drop_score=drop_score,
                font_path=font_path)
197
            draw_img_save = "./inference_results/"
L
LDOUBLEV 已提交
198 199
            if not os.path.exists(draw_img_save):
                os.makedirs(draw_img_save)
L
LDOUBLEV 已提交
200 201
            if flag:
                image_file = image_file[:-3] + "png"
L
LDOUBLEV 已提交
202 203
            cv2.imwrite(
                os.path.join(draw_img_save, os.path.basename(image_file)),
D
dyning 已提交
204
                draw_img[:, :, ::-1])
W
WenmuZhou 已提交
205
            logger.info("The visualized image saved in {}".format(
206
                os.path.join(draw_img_save, os.path.basename(image_file))))
207

L
LDOUBLEV 已提交
208 209
    logger.info("The predict total time is {}".format(time.time() - _st))
    logger.info("\nThe predict total time is {}".format(total_time))
210

L
LDOUBLEV 已提交
211 212 213 214 215 216 217
    img_num = text_sys.text_detector.det_times.img_num
    if args.benchmark:
        mems = {
            'cpu_rss_mb': cpu_mem / count,
            'gpu_rss_mb': gpu_mem / count,
            'gpu_util': gpu_util * 100 / count
        }
littletomatodonkey's avatar
littletomatodonkey 已提交
218
    else:
L
LDOUBLEV 已提交
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
        mems = None
    det_time_dict = text_sys.text_detector.det_times.report(average=True)
    rec_time_dict = text_sys.text_recognizer.rec_times.report(average=True)
    det_model_name = args.det_model_dir
    rec_model_name = args.rec_model_dir

    # construct det log information
    model_info = {
        'model_name': args.det_model_dir.split('/')[-1],
        'precision': args.precision
    }
    data_info = {
        'batch_size': 1,
        'shape': 'dynamic_shape',
        'data_num': det_time_dict['img_num']
    }
    perf_info = {
        'preprocess_time_s': det_time_dict['preprocess_time'],
        'inference_time_s': det_time_dict['inference_time'],
        'postprocess_time_s': det_time_dict['postprocess_time'],
        'total_time_s': det_time_dict['total_time']
    }

    benchmark_log = benchmark_utils.PaddleInferBenchmark(
        text_sys.text_detector.config, model_info, data_info, perf_info, mems,
        args.save_log_path)
    benchmark_log("Det")

    # construct rec log information
    model_info = {
        'model_name': args.rec_model_dir.split('/')[-1],
        'precision': args.precision
    }
    data_info = {
        'batch_size': args.rec_batch_num,
        'shape': 'dynamic_shape',
        'data_num': rec_time_dict['img_num']
    }
    perf_info = {
        'preprocess_time_s': rec_time_dict['preprocess_time'],
        'inference_time_s': rec_time_dict['inference_time'],
        'postprocess_time_s': rec_time_dict['postprocess_time'],
        'total_time_s': rec_time_dict['total_time']
    }
    benchmark_log = benchmark_utils.PaddleInferBenchmark(
        text_sys.text_recognizer.config, model_info, data_info, perf_info, mems,
        args.save_log_path)
    benchmark_log("Rec")


if __name__ == "__main__":
    main(utility.parse_args())